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Abstract

The Fourier series is a tool for mathematics, electrical and other engineering sciences .And also

it’s beneficial  in  differential  equations  because  it  can  transform  them  into  equations  which  are 

easier  to  solve. Many  of  the  phenomena  studied  in  engineering  and  science  are  periodic  in 

nature the current and voltage in an alternating current circuit. These periodic functions can be 

analyzed  into  their  constituent  components  (fundamentals  and  harmonics)  by  a  process  called 

Fourier  analysis.  In this  work,  Fourier-series  representation  of  a  weight function  is used  to 

highlight and clarify the controversial problem of finding the value of the function at a point of 

discontinuity. Several physical situations are presented to examine the consequences of this kind 

of  representation  and  its  impact on  some widely  well-known  problems  whose  results  are  not

clearly understood.
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1. Introduction

Jean Baptiste Joseph  Fourier  (1768-1830) was a  French mathematician, physicist and engineer, 

and  the  founder  of  Fourier  analysis.  In  1822  he  made the  claim,  seemingly  preposterous  at  the 

time,  that  any  function  of  t, continuous  or discontinuous,  could  be  represented  as a  linear 

combination  of  functions  sin  nt.  This  was  a  dramatic  distinction  from  Taylor  series.  While  not 

strictly  true  in  fact,  this  claim  was  true  in  spirit  and  it  led  to  the  modern  theory of  Fourier 

analysis with wide applications to science and engineering. Fourier series started life as a method 

to  solve  problems  about the  now  of  heat  through ordinary materials.  It  has  grown  so  far  that  if
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you search our library's catalog for the keyword \Fourier" you will nod 618 entries as of this 

date. It is a tool in abstract analysis and electromagnetism and statistics and radio communication 

and : : : . People have even tried to use it to analyze the stock market. (It didn't help.) The 

representation of musical sounds as sums of waves of various frequencies is an audible example. 

Roughly speaking, a Fourier series expansion for a function is a representation of the function as 

sum of sin’s and cosines. Expressing a musical tone as a sum of a fundamental tone and various 

harmonics is such a representation. So is a spectral decomposition of light waves. The main 

Fourier series expansions that we use in this course are stated in the next section. We shall never 

prove that these expansions are correct. But in the section “Validity of Fourier series” we give an 

elementary partial argument that, hopefully, will convince you that the expansions are indeed 

correct. 

The problem of a conducting sphere of radius R and uniform charge Q on its surface is discussed 

in introductory physics textbooks [1] [2]. For such a sphere, Gauss’s law gives that the electric 

field, at a point r, is zero inside (𝑟 < 𝑅 ) and 
𝑘𝑄

𝑅2   outside (𝑟 > 𝑅 ). Usually, the question of 

finding the electric field on points on the surface of the sphere is not raised due to the 

discontinuity of the field at such points. The limit of the electric field as  r→R   from inside gives 

zero and from outside gives  
𝑘𝑄

𝑅2    and therefore the electric field is ill-defined  on the surface. 

Most textbooks as in [1] and [2], authors calculate, by direct use of Gauss law, the electric field 

just outside a conducting surface and obtain the correct value 
𝑘𝑄

𝑅2   . This value is the same as the 

outside limiting value of the electric field of the conducting sphere. This causes a misleading and 

confusion among students for the electric field on the surface and may claim that the electric 

field there is 
𝑘𝑄

𝑅2
   . This is not a correct conclusion and one should admit the ambiguity of the 

electric field on the surface and care must be taken when dealing with such a situation. In some 

cases one has to assign a value for the electric field at a very small patch on the surface for the 

purpose of calculating the electrostatic pressure (force per unit area) on the surface. This has 

been done by Griffiths in his Electrodynamics book [3]. Griffiths assigned the average value 

between the inside and outside limits and got the value 
𝑘𝑄

2𝑅2    for the electric field on the surface 

of the conductor, and he arrived at the correct well-known value of the electrostatic pressure on 

the surface [4], namely,𝜎
2

2𝜀0
⁄  where σ is the surface charge density and 𝜀0 is the electric 
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permittivity of free pace. Other researchers [5] [6] [7] [8] [9] considered the electric field which 

suffers a jump at the surface and concluded that the appropriate value of the electric field at the 

surface is the average value between the inside and the outside limits. 

In the light of the above debate and due to the ambiguity of this problem, the aim of the present 

paper is to give a proof that the value of the electric field at the discontinuity point on the surface 

is in fact the average value between the inside and the outside limits of the electric field as  r→ 

R. Fourier series expansion will be used to obtain our result. 

2. Fourier Series Representation of a Discontinuous Function 

Expansion of a function by a Fourier series has been of a great advantage in physics and 

engineering [10]-[18] because it allows one to more easily manipulate functions that are 

discontinuous or difficult to represent analytically. Some investigators have been working on fast 

and accurate simulations for Fourier representation of discontinuous function that represent 

scientific problems [19]-[25]. The value of the expanded function f (x) at its point of 

discontinuity point is the average of the upper and lower limits of the function [26] [27].  

This means that the Fourier series converges to half-way between these two limits. 

Mathematically, at a point of discontinuity, 𝑥0 the Fourier series converges to the value  𝑓( 𝑥0) 

given by 

𝐹( 𝑥0) =
1

2
𝑙𝑖𝑚𝜀→0[𝑓( 𝑥0 + 𝜀) + 𝑓( 𝑥0 − 𝜀)                                                                                 (1) 

The Fourier series expansion of the function  ( ) fx, with period 2L is conventionally written as 

𝑓(𝑥) =
𝑎0

2
+ ∑ (𝑎𝑛 cos

𝑛𝜋𝑥

𝐿
+ 𝑏𝑛 sin

𝑛𝜋𝑥

𝐿
)

∞

𝑛=1
                                                                             (2) 

where 𝑎0, 𝑎𝑛, bn  are constants called Fourier coefficients. Due to the orthogonality of the sine 

and cosine functions, the Fourier coefficients are readily obtained with the result. Where  

𝑎0 =
1

𝐿
∫ 𝑓(𝑥)𝑑𝑥

𝐿

−𝐿
                                                                                                                         (3) 

𝑎𝑛 =
1

𝐿
∫ 𝑓(𝑥)cos (

𝑛𝜋𝑥

𝐿
)

𝐿

−𝐿
𝑑𝑥                                                                                                         (4) 
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𝑏𝑛 =
1

𝐿
∫ 𝑓(𝑥)sin (

𝑛𝜋𝑥

𝐿
)

𝐿

−𝐿
𝑑𝑥                                                                                                          (5)                                                                                             

                             

The factor 
1

2
 which appears in the  𝑎0  term in Equation (2) is included so that Equation (4) may 

be applied for  n=0, as well as  n >0 

In order to demonstrate Equation (1), we consider a specific function 𝑓(𝑥)which is weight 

function given by 

𝑓(𝑥) = {
0, 𝑥 ∈ (−𝐿, 0)
1, 𝑥 ∈ (0, 𝐿) 

                                                                                                              (6) 

Applying  Equations (3)-(5), one immediately gets 𝑎0 = 1, 𝑎𝑛, = 0, 𝑏𝑛 =
2

𝑛𝜋
 𝑓𝑜𝑟 𝑛 = 𝑜𝑑𝑑 𝑜𝑛𝑙𝑦 

Therefore, Equation (2) yields 

𝑓(𝑥) =
1

2
+

2

𝜋
∑ (

1

n
sin

𝑛𝜋𝑥

𝐿
)

∞

𝑛=𝑜𝑑𝑑
                                                                                                (7) 

Obviously, at the point of discontinuity ( x=0 ) the series in Equation (7)  

converges to 1/2, which is the average value between the two limits of  𝑓(𝑥)below and above the 

jump. 

3. A Uniformly Charged Conducting Sphere 

In order to discuss the problem of the value of the electric field on the surface of a  

conducting sphere, we consider a conducting sphere of radius R which is uniformly charged by a 

charge Q. Direct application of Gauss’s law gives the electric field at a point r from the sphere’s 

center, with the result 

𝐸̌ = {
0, 𝑟 < 𝑅

𝑘𝑄

𝑟2 𝑟̂, 𝑟 > 𝑅
                                                                                                                          (8) 
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with  𝐾 =
1

4𝜋𝜀0
. Obviously, the electric field suffers a discontinuity at points on the surface since 

its limit from inside gives zero while from outside gives 
𝑘𝑄

2𝑅2     

In order to find the electric field at points on the surface, we proceed as follows:  We consider a 

conducting object which carries a surface charge density σ  on its  surface. The widely well-

known quantity which is usually invoked is the electric  field just outside the conductor. The 

usual treatment to derive this is by considering a cylindrical Gaussian surface whose half of its 

length inside the conductor and the other half is outside as in Figure 2. Application of Gauss’s 

law yields 𝐸 =
𝜎

𝜀0
; which is found in most standard introductory physics textbooks [2]. 

Therefore, the electric field is zero inside the conductor and a constant (
𝜎

𝜀0
) just outside. The 

result shows that the electric field suffers a finite jump on the surface, so that the electric field is 

written as 

𝐸 = {
0, −𝜀 ≤ 𝑥 < 0

𝜎

𝜀0
, 0 < 𝑥 ≤ 𝜀 

where ε is a small quantity and  x=0 , the discontinuity point, represents a point on the surface. 

The point now is to expand the electric field in Fourier series over the interval  [-ε ε, ] ,  

Comparing Equation (9) with Equation (6) and noting that  

L  → ε , the Fourier coefficients, given in Equations (3)-(5) are easily calculated  

with the result 𝑎0 =
𝜎

𝜀0
, 𝑎𝑛 = 0, 𝑏𝑛 =

2𝜎

𝑛𝜋𝜀0
;    Therefore, Equation (2) gives the Fourier expansion 

of the electric field which is given by  

𝐸 =
𝜎

2𝜀0
+

2𝜎

𝜋𝜀0
; ∑ (

1

n
sin

𝑛𝜋𝑥

𝜀
)

∞

𝑛=𝑜𝑑𝑑
                                                                                            (10) 

It should be clear that the above series converges to 
𝜎

2𝜀0
 at the discontinuity point ( x=0 ) which is 

the average value of the electric field between its two limits from inside and outside. Therefore, 

by using the relation 𝜎 =
𝑞

4𝜋𝑅2 for the conducting sphere problem, we get our required result for 

the electric field on the surface, 
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𝐸 =
1

2
[lim

𝑟
→ 𝑅  𝐸] =

𝑄

2(4𝜋𝜀0𝑅)
=

𝐾𝑄

2𝑅2                                                                                       (11) 

Our result in Equation (11) removes the ambiguity of the electric field at points on the surface of 

a conducting sphere and assigns a value of this field at its discontinuity point. This interesting 

result must be explained at the undergraduate level for physics and engineering students, since it 

has been avoided in almost all undergraduate physics textbooks. It should be emphasized that our 

result, beside its mathematical interest, it also has applications in physical situations in which the 

value of a function at its point of discontinuity is necessary in order to derive some relevant 

physical quantities. In the next section, three physical situations will be presented to demonstrate 

the use of our result and to show that the value of a discontinuous function at its point of 

discontinuity is the average value of the function at that point, which is the value where the 

Fourier series of the function converges. 

4. Some Physical Problems Involve Discontinuous Functions 

Here, we consider three physical situations that involve functions that suffer a jump at a point on 

a boundary. Therefore, assigning a value of the function at that point is necessary in order to 

achieve a relevant physical quantity. 

4.1. The First Problem: Electrostatic Pressure on Surface of a Conductor 

The first problem deals with the calculation of electrostatic pressure on the surface of a 

conductor which contains a surface charge density  σ. This  problem has been discussed by 

Griffiths [28] in his famous textbook on electrodynamics. There, Griffiths considered a patch on 

the surface of the conductor in attempt to find the electrostatic pressure on the surface of the 

conductor. He argued (but not rigorously) that the electric field on the patch is  the average value 

between the value of electric field just outside the conductor (
𝜎

𝜀0
) and its zero value inside. Hence 

he arrived at the value   
𝜎

2𝜀0
at the patch, and therefore the pressure (force per unit area) is just  

𝜎2

2𝜀0
However, this argument seems a bit dodgy because the patch is not a point so that  part of the 

patch creates a field that affects the other part of the patch. So our  result can now be applied to 

determine the value of the electric field at a point  on the surface. For that purpose, we construct 

a small cylindrical surface as  shown in Figure 1. We assume  ε  to be very small, so that, 
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lim
𝜀

0−  𝐸 = 0 𝑎𝑛𝑑 lim
𝜀

0+  𝐸 =
𝜎

𝜀0
 Therefore, the average of these two limits gives the  correct 

value of the electric field at a point on the surface of the conducting sphere, namely, 𝐸 =
𝜎

2𝜀0
and 

hence the well-known value of the electrostatic pressure on the surface of the sphere. 

4.2. The Second Problem: Energy Aspects in Charging a Capacitor 

The well-known two capacitor problem has been of great interest since long time  ago, and 

variety of approaches have been considered to explain the energy loss in  this problem [29] [30] 

[31] [32]. The essence of the problem amounts to the  problem of charging a capacitor of 

capacitance C by a power supply of electromotive force  𝑉0 with a series resistor of resistance R. 

At the end of charging,  the energy stored in the capacitor will be 
1

2
𝐶𝑉0

2 and exactly the same  

amount will be dissipated regardless of the value of R. In ref. [30], the authors  used 

superconducting wires and used the flux of energy carried by the Poynting vector to calculate the 

energy stored in the capacitor and the energy loss. In such  situation, the charge on the capacitor 

involves a step function, namely,𝑄(𝑡) = 𝑄𝜃(𝑡)  In their derivation of their final result for the 

stored energy, U, they encountered the integral 

𝑈 =
−𝑄2

𝐶
∫ 𝜃(𝑡)𝛿(𝑡)𝑑𝑡 =

𝑄2

𝐶
𝜃(0)                                                                                               (12) 

and a similar one for the energy loss. The value of the step function at the discontinuity point ( t= 

0) was used by taking the average value between the limits from below and above   t = 0  as 

𝜃(0) =
1

2
[𝜃(0−) + 𝜃(0+)]                                                                                                          (13) 

Therefore, the average value at the discontinuity point has a crucial role in deriving the energy 

loss in this process. 

4.3. The Fermi Distribution Function 

In this subsection, we present our third physical situation for the use of the average value at the 

jump of a discontinuous function. The average number of  fermions, in a single-particle state 

with energy 𝜀𝜀is given by the Fermi-Dirac distribution function [33] 

, 
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where µ  is the chemical potential, Bk   is the Boltzmann constant and T is the temperature in 

Kelvin, as shown in Figure 2. We note that the Fermi distribution function behaves like a step 

function 

 

International Journal For Research In Mathematics And Statistics

Volume-6 | Issue-1 |March,2020 9

ISSN: 2208-2662



 

Therefore, the average population number of fermions at zero temperature is  

1/2, which is at the midpoint of the jump. One can also observe form Equation  (14) that for any 

temperature   T > 0, the average population number is 1/2  when the energy is equal to the 

chemical potential. 
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5. Conclusion 

In this paper, the authors examined the behavior of a weight function and its application in some 

physical systems. Fourier series representation of such function has been studied, and it has been 

pointed out that, at the point of discontinuity, this series converges to the average value between 

the two limits of the  function about the jump point. So for a step function, this convergence 

occurs at the exact value of one half. The obtained result clarifies and solves a controversial 

problem about the value of the electrostatic field at points on the surface of a conducting sphere, 

which is usually avoided in introductory physics books. As an application of our result, three 

physical systems have been discussed and the average value of the function at the discontinuity 

point has been used in such systems: The first deals with the calculation of the electrostatic 

pressure on the surface of a conductor, the second concerns the calculation of the energy loss in 

charging a capacitor using superconducting wires and the third is the behavior of the population 

function of Fermi gas at zero temperature. 
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