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Abstract
We explained and classified the complete surfaces of constant mean curvature in addition to construct the first examples 
of  complete surface  of  positive curvature, properly  embedded  minimal  surfaces  and  we  prove  that  every  complete 
connected immersed surface with positive extrinsic curvature 𝐾 in 𝐻2 × 𝑅 must be properly embedded, homeomorphic 
to  a  sphere  or  a plane. We  followed  the  analytical  mathematical  method and  we  found  that  the  complete  surface  of 
positive curvature has multi applications in different fields of science specially in physics.
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1. Introduction 

Differential geometry is a wide domain of modern mathematics, whose significance is increasing at present. One of its 

origins is in the theory of curves. Everybody who wishes to study geometric problems has to begin by studying the 

theory curves, where exact definitions, notions, and invariant characteristics are introduced for the first time. Here the 

initial geometric intuition is formed and then it is developed in the studying of surfaces theory and the geometry of sub 

manifolds. There exist good and extensive monographs devoted to special curves, but the problems of the general theory 

are not presented. On the other hand, many interesting and important questions on curves are not discussed, in most 

cases.  We present this is deal with complete smooth surfaces of constant Gaussian curvature 𝑘, embedded in the 

Euclidean space 𝑅3. We treat separately and in the following order the cases 𝑘 = 0, 𝑘 > 0, and 𝑘 < 0. We show that if 

the Gaussing curvature is identically zero. The surfaces are union of parallel lines that every complete and connected 

regular surface of positive and constant Gaussian curvature, is around sphere and, in particular, that is compact surfaces 

exist only in the positive case. As mentioned, before we can imagine, intuitively a curve as being just a deformation of a 

straight line without thinking necessary at an analytical representation. We expect the curve to have well defined tangent 

at each point. This condition should rule out both cusps and self-intersections.  

 

2. The Definition of the Curve 

Definition (2.1): A subset 𝑀 ⊂ 𝑅3 is called a regular curve (or a 1-dimensional smoothsubmanifold of 𝑅3) if, for each 

point𝑎 ∈ 𝑀 there is a regular parameterized curve (𝐼, 𝑟), whose support, 𝑟(𝐼), is an open neighbourhood in 𝑀 of the 

point a (i.e. is a set of the form 𝑀 ∩ 𝑈, where 𝑈 is an open neighborhood of a in𝑅3), while the map 𝑟 ∶  𝐼 → 𝑟(𝐼)is a 

homeomorphism, with respect to the topology of subspace of 𝑟(𝐼). A parameterizedcurve with these properties is called 

a local parameterization of the curve 𝑀around the point 𝑎. If for a curve 𝑀 there is a local parameterization (𝐼, 𝑟) which 

is global, i.e., for which 𝑟(𝐼)  =  𝑀, the curve is called simple.[7]p(22) 

Example (2.2):  

1. Any straight line in 𝑅3is a simple curve, because it has a global parameterization, given by a function of the form 𝑟 ∶
 𝑅 →  𝑅3, 𝑟(𝑡)  =  𝑎 +  𝑏 𝑡, where 𝑎 and 𝑏are constant vectors, 𝑏 ≠  0. 

2. The circular helix is a simple regular curve, with the global parameterization 

𝑟 ∶ 𝑅 → 𝑅3, given by 𝑟(𝑡)(𝑎 𝑐𝑜𝑠 𝑡, 𝑏 𝑠𝑖𝑛 𝑡, 𝑏𝑡). 

3. A circle in 𝑅3 is a curve, but it is not simple, since no open interval can be homeomorphic to the circle, which is a 

compact subset of 𝑅3. 

 

Theorem (2.3): Let 𝑀 ⊂ 𝑅3be a regular curve and (𝐼, 𝑟 =  𝑟(𝑡)), (𝐽, 𝜌 =  𝜌(𝜏))– twolocal parameterizations of 𝑀 such 

that 𝑊 = 𝑟(𝐼) ∩ 𝜌(𝐽) ≠ ∅. Then (𝑟−1(𝑊), 𝑟| 𝑟−1(𝑊))and (𝜌−1(𝑊), 𝜌| 𝜌−1(𝑊))are equivalent parameterized curves. 

 

Theorem (2.4): Let 𝑘1(𝑠), … 𝑘𝑛−1(𝑠) be continuous functions of a parameter 𝑠 ∈ [0,1]. Assume that 𝑘1 > 0, … 𝑘𝑛−2 >
0 there exists a unique up to a rigid motion 𝐶2-regular curve𝛾 ⊂ 𝐸𝑛 having the functions 𝑘𝑖 as its curvatures and s as the 

length of arc.[10]p(172) 

 

Remark (2.5): It should be noticed that, usually, the natural parameter along a parameterized curve cannot be expressed 

in finite terms (i.e., using only elementary functions) with represent to parameter along the curve. This is, impossible 

even for very simple curves, such that the ellipse  

 

{

𝑥 = 𝑎𝑐𝑜𝑠𝑡 

𝑦 = 𝑏𝑠𝑖𝑛𝑡,
                                                                                                                                    (2.1) 

 

With 𝑎 ≠ 𝑏, for which the arc length can be expressed only in terms of elliptic functions (this is, actually, the origin of 

their name!). there for, although the natural parameter is very important for theoretical consideration and for performing 

the proofs, as the reader will have more than once the opportunity to see in this paper, for concrete examples of 

parameterized curves we will hardly ever use it.[7]p(22) 

 

3.Manifolds of Constant Curvature:  

 

Definition (3.1): An 𝑛 −dimensional manifold of constant curvature 𝑘 is a length space 𝑥 that is locally isometric to𝑀𝑘
𝑛  

In order words, for every point 𝑥 ∈ 𝑋 there an 𝜀 > 0 and anisometry∅form 𝐵(𝑥, 𝜀) on to a ball 𝐵(∅(𝑥), 𝜀) >⊂
𝑀𝑘

𝑛.[5]p945) 

 

Theorem (3.2): Let 𝑥 be a complete, connected, 𝑛 − dimensional manifold of constant curvature 𝑘. When endowed 

with the induced length metric the universal covering of 𝑋 is isometric to 𝑀𝑘  
𝑛 . 

Manifold of positive scalar curvature and let 𝑆𝑝 denote an embedded 𝑝 − sphere in 𝑋 with trivial normal bundle and 

with 𝑝 + 𝑞 + 1 = 𝑛 and 𝑞 ≥ 2 . The metric 𝑔 can be replaced by a pic – metric on𝑋 which, on a tubular neighborhood 

ofSp , is the standard product 𝑑𝑝
2+𝑔𝑡𝑜𝑟

𝑞+1
(𝛿) for some appropriately small 𝛿 . 
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4.Surfaces with Positive Constant Gauss Curvature: 

Let us start with a surface ∑ endowed with a complete Riemannian metric 𝐼 of constant Gauss curvature 𝐾(𝐼) = 𝐾 > 0. 

Thus if ∑ is simply – connected ∑ is isometric to the standard sphere 𝑆2(𝑟) of radius 𝑟 = 𝐼 √𝐾 ,⁄   form the cartan – 

Hadamard theorem  

 

Theorem (4.1): Let ∑ be a surface and ∑⟶ 𝑀3 (𝑐) a c0mplete immersion with positive constant Gauss curvature. Then 

𝑓(∑  ) is a totally umbilical round sphere. Observe that, from the Gauss equation, a surface with constant Gauss 

curvature must also have constant extrinsic curvature. In 𝑅3 both curvature agree and they differ by a constant in 𝐻3 and 

𝑆3 moreover, if the gauss curvature is positive then extrinsic curvature of the surface is also positive in 𝐻3  and 𝑅3 

however, if the Gauss curvature 𝐾(𝐼) is positive in 𝑆3 then the extrinsic curvature is only positive if 𝐾(𝐼) > 1 .[6]p(45) 

 

Theorem (4.2): Let (𝐼, 𝐼𝐼) be a Codazzi pair on a surface ∑ with positive constant extrinsic curvature. Then the (2,0) –

part of 𝐼 with respect to the Riemannian metric 𝐼𝐼 is a holomorphic quadratic form. 

 

5.The tangent plan and first fundamental form of a ruled surface: 

To compute the coefficients of the first fundamental form of a ruled surface we need, first of all, the partial derivatives 

of the radius vector of a point of the surface. We have, obviously,  

𝑟𝑢
∕ 

=  𝑝∕ + 𝑏b/;𝑟𝑣
∕

= b/
u                                                                                                                                                       (5.1) 

 

Thus, the coefficients of the first fundamental form of the surface will be  

 

𝐸 ≡  𝑟𝑢
∕
 . 𝑟𝑢

∕
 =  𝑝∕2  +  2𝑣𝑝∕. b/+𝑣2b/2                                                                                                                 (5.2) 

 

𝑓 ≡  𝑟𝑢
∕
 . 𝑟𝑣 

∕
 = 𝑝∕ .  b;                                                                                                    (5.3) 

 

𝐺 ≡  𝑟𝑣
∕
.𝑟𝑢

∕
= I .                                                                                                             (5.4)  

 

It follows that the first fundamental form of a ruled surface can be written as: 

 

𝑑𝑠2 = (𝑝∕2+ 2𝑣𝑝∕.b/+𝑣2 b/2 )𝑑𝑢2+2(𝑝∕.b) 𝑑𝑢𝑑𝑣+𝑑𝑣2 .                                               (5.5) 

 

To find the tangent plane at a point of a ruled surface. We notice. First of all that the direction of the normal to the plan 

(and. Hence. To the surface) at a given point is given by the vector 𝑟𝑢
∕

× 𝑟𝑣,
∕
 i.e., by the vector  

 

N ≡  𝑟𝑢
∕

× 𝑟𝑣
∕
=𝑝∕ × b+ 𝑣 (b/× b)                                                                           (5.6) 

 

Therefore. If R is the position vector of a point from the tangent plan to the surface at a point corresponding to the pair 

of parameters ( 𝑢 , 𝑣 ), then the equation of the tangent plan can be written under the form  

 

(R – r). N = 0, 

 

i.e. 

(R – 𝑝 – 𝑣b). ( 𝑝∕ ×  b) = 0 

 

Or 

(R, 𝑝∕, b) + 𝑣 (R, b/ , b ) – ( 𝑝, 𝑝∕ , b ) − 𝑣 (𝑝, b/, b ) = 0 

 

Or, also, 

[R× 𝑝∕+ 𝑣(R×b/) − 𝑝 ×  𝑝∕  −  𝑣( 𝑝 × b/)] =0.                                                 (5.7) 

 

 

A characteristic property of the ruled surfaces is described by the following proposition. [9] p (187) 

Proposition (5.1): The tangent planes to a ruled surface in point located along the same ruling, belong to the pencil of 

planes determine by that ruling, or, to but if another way, the tangent plane at a point of a ruled surface contains the 

ruling passing through that point. 
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Proof: Since the ruling and the tangent plane already have a point in common (the very point of tangency), it is enough 

to prove that the ruling is parallel to the tangent plane or, which is the same, that it is perpendicular to the normal to the 

surface at the tangency point. We have, indeed,  

 

N . b = [ 𝑝∕  × b + 𝑣( b/× b )] . b = (𝑝∕, b, b/ ) + 𝑣 (b/, b, b/ ) = 0. 

 

Definition (5.2): A fundamental forms is the relative to a Cartesian frame in 𝑅3, surfaces ∑ can be described implicitly  

𝑓 ( 𝑥 , 𝑦 , 𝑧 ) = 0 

But for the purposes of differential geometry must be described parametrically  

 

𝑟 ( 𝑢 , 𝑣 ) =  (

𝑥 ( 𝑢 , 𝑣 )

𝑦 ( 𝑢 , 𝑣 )

𝑧 ( 𝑢 , 𝑣 )
) 

Results: 

There are many results and usages of the form of complete surface of constant mean curvature of surface, in different 

fields of chemistry, physics, engineering and others. In this study we dealt with few examples one of which is used in 

the manufacture of car tire tubes and the application of curvatures here is used to find the normal curvature and ideal 

level for its manufacture and, we can model via the computer to know its changes and produced in perfect way. Also, it 

used for laboratory purposes and for dealing with various liquids that can help researchers to know the liquids nature. 

We describe and, we can apply the form of complete surface of constant mean curvature of surface and show some 

applications in Geometry Processing. We also approached the continuous and discrete cases and discussed an 

implementation. It is an efficient concept that can reduce noise and remove auto-intersections.  
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