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Abstract
In this paper, we study to solve the Cauchy, Jensen and Cauchy-Jensen additive function inequalities with 3k-variables 
related to Jordan-von Neumann type in Banach space. These are the main results of this paper.
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1. INTRODUCTION 
Let X and Y be a normed spaces on the same field K, and f : X → Y be a mapping. We use the notation · X  · Y for 
corresponding the norms on X and Y. In this paper, we investisgate additive functional inequalities associated with 
Jordan-Von Neumann type additive functional equatonal when X is a normed space with norm · X and that Y is a 
Banach space with norm · Y . In fact, when X is a normed space with norm · X and that Y is a Banach space with norm 
· Y we solve and prove the Hyers − Ulam − Rassias type stability of following additive functional inequalities 
 

 
 
The study the stability of generalized additive functional inequalities associated with jordan-von neumann type additive 
functional equational originated from a question of S.M. Ulam[1], concerning the stability of group homomorphisms. 

 
Let (G, ∗)  be a group and let (G0 , ◦, d) be a metric group with metric (d ·, · ) . Geven ∈ > 0, does there exist a δ > 0 
such that if f : G → G0 satisfies 

 
then there is a homomorphism h : G → G 

 
 
The concept of stability for a functional equation arises when we replace functional equation by an inequality which acts 
as a perturbation of the equation. Thus the stability question of functional equations is that how do the solutions of the 
inequality differ from those of the given function equation? Hyers gave a first affirmative answes the question of Ulam 
as follows: In 1941 D. H. Hyers [2] Let ∈ ≥ 0 and let f : E1 → E2 be a mapping between Banach space  
 

 
for all x, y ∈ E1 and some ∈ ≥ 0. It was shown that the limit 

 
exists for all x ∈ E1 and that T : E1 → E2 is that unique additive mapping satisfying 

 
 
Next in 1978 Th. M. Rassias [3] provided a generalization of Hyers’ Theorem which allows the Cauchy difference to be 
unbounded: 
Consider E, E0 to be two Banach spaces, and let f : E → E0 be a mapping such that f tx is continous in t for each fixed 
x. Assume that there exist θ ≥ 0 and p ∈ [0, 1), ∈ > 0 Such that  
 

 
 
Where ∈ and p is constants with ∈ > 0 and < 1. Then the limit  

 
 
  

Σ 
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there exists a unique linear L : E → EJ satisfies 

 
If p < 0, then inequality (1.7) holds for x, y /= 0 and (1.9) for x /= 0 
 
We notice that in Rassias’ functional inequality (1.7) Mathematicians around the world such as [4],[5] as well as Rassias 
have asserted that the inequality (1.7) no longer holds true when p = 1 from the assertion that gave rise to the idea to 
generalize the generalized functional equation Hyers- Ulam more specifically. 
 
Thus, to replace the non-existent condition mentioned above, Mathematician Rassias  

[2] has given the following specific conditions:  with P+Q /= 1. 
 

for all x.  ∈ E Gaˇvruta[6]  provided  a  further  generalization  of  Rassias  theorem.  During the last two decades, a 

number of papers and research monographs have been published on various generalizations and applications of the 

generalized Hyers-Ulam stability to a number of functional equations and mappings. 
 
Afterward Gila´ny [7] showed that is if satisfies the functional inequality 

 
 f satisfies the Jordan-von Newman functional equation 

 
 
Then, mathematicians in the world proved to extend the functional inequality (1.11) as [7]-[17].In addition, 
mathematicians have developed the achievements of their predecessors who have built mathematical models from 
advanced to modern mathematics, especially functional equations applied on function spaces to Unlocking means 
connecting with other Maths. [3]-[35]Recently, the authors studied the Hyers-Ulam-Rassias type stability for the 
following functional inequalities (see [31],[32],[34]) 

In banach spaces. 
 
In this paper, we solve and proved the Hyers-Ulam- Rassias type stability for functional inequalitie (1.1). (1.2) and (1.3) 
ie the functional inequalities with 3k-variables. Under suitable assumptions on spaces X and Y, we will prove that the 
mappings satisfying the functional inequatilie (1.1). (1.2) and (1.3). Thus, the results in this paper are general- ization of 
those in [21],[31],[32],[34] for functional inequatilie with 3k-variables. 
The paper is organized as followns: 
In section preliminarier we remind some basic notations in such as Solutions of the in- equalities. 
 
Section:3 The basis for building solutions for functional inequalities related to the type of Jordan-Neuman additive 
functional equations 
Section:4 Establishing solutions to functional inequality (1.1) related to the type of Jensen additive functional equation 
Section:5 Establishing solutions to functional inequality (1.2) related to the type of Cauchy additive functional equation. 
Section:6 Establishing solutions to functional inequality (1.3) related to the type of Cauchy-Jensen additive functional 
equation. 
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2. PRELIMINARIES 
2.1. Solutions of the inequalities. The functional equation 

 
is called the Cauchuy equation. In particular, every solution of the cauchuy equation is said to be an additive mapping. 
 
The functional equation 

 
is called the Jensen equation. In particular, every solution of the Jensen equation is said to be a Jensen additive mapping. 
The functional equation 

 
is called the Cauchuy-Jensen equation. In particular, every solution of the Cauchuy- Jensen equation is said to be a 
Jensen-Cauchy additive mapping. 
 
3. THE BASIS FOR BUILDING SOLUTIONS FOR FUNCTIONAL INEqUALITIES RELATED TO THE TYPE OF JORDAN-NEUMAN 
ADDITIVE FUNCTIONAL EqUATIONS 
 
The basis for building solutions for functional inequalities related to the type of Jordan- Neuman additive functional 
equations. Now, we first study the solutions of (1.1), (1.2) and (1.3).   Note that for this inequalities, X is a normed 
space with norm    · X and that Y is a Banach space with norm · Y. Under this setting, we can show that the mappings 
satisfying (1.1), (1.2) and (1.3) is additive. 
Here we assume that G is a 3k-divisible abelian group. 
 
Proposition 3.1. Suppose f: X → Y be a mapping such that  

 
for all xj, yn,zj ∈ X for all j = 1 → n then f is additive. 
 
Proof. Assume that f : X → Y satisfies (3.1). 

We replacing  by  in (3.1), we have 

. 

Next We replacing  by x,  in (3.1), 
we have 

 
, for all x ∈ X. 

Hence.  

Next We replacing  by x,  in 

(3.1), we have 

 

for all x,y ∈ X. It follows that  This completes the proof. 
 
Proposition 3.2. f: X → Y be a mapping such a that  

 
 
for all xj, yj,zj ∈ X for all j = 1 → n then f is additive. 
Proof. Assume that f : X →Y satisfies (3.4). 
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We replacing  by  in (3.4), we have 

. 

Next We replacing  by  in (3.4), we 

have 

 
for all x ∈ X. 

Hence.  

Next We replacing  by x,  in 

(3.4), we have 

 

for all x,y ∈ X. It follows that  This completes the proof. 
 
Proposition 3.3. f: G → Y be a mapping such that 

 
for all xj, yj,zj ∈ X for all j = 1 → n then f is additive. 
Proof. Assume that f : G → Y satisfies (3.7). 

We replacing  by  in (3.7), we have we get 

 

. So  

Next We replacing  in (3.7), 
we have 

 
 

for all x ∈X. 

Hence.  

Next We replacing  by  in 

(3.7), we have 

 
 

for all x ∈ X. 

Thus . 

Next We replacing in (3.7), 
we have 
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Thus 

 
 
Next put x = xj,y = yj for all j = 1 → n in (3.12), we have 

 
 

for all x,y ∈ G. It follows that f is an additive maping and the proof is complete. 
 
4. Establishing solutions to functional inequality (1.1) related to the type of Jensen additive functional equation 
 
Now, we first study the solutions of (1.1). Note that for this inequality, X is a normed space with normand that Y is a 
Banach space with norm. Under this setting, we can show that the mappings satisfying (1.1) is Jensen additive. These 
results are give in the following. 
 
Theorem 4.1. Suppose q > 1, θ be non-negative real and f : X → Y be an odd mapping such that 

 
for all xj, yj,zj ∈ X for all j = 1 → n 

. Then there exists a unique additive mapping H : X → Y such that 

 
for all x ∈ X. 
Proof. Assume that f : X → Y satisfies (4.1). 

We replacing  by  in (4.1), we 

Have 

 
for all x ∈ X.So 

 

Hence we have 
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for all nongnegative m and l with m > l, ∀x ∈ X. It follows from (4.5) that the sequence  is a 
cauchy sequence for all x ∈ X. Since Y is a Banach space, the 

sequence  coverges. 

 
So one can define the mapping H : X → Y by 

 
for all x ∈ X. 

 
for all xj, yj,zj ∈ X for all j = 1 → k. So 

 
 

for all xj, yj,zj ∈ X for all j = 1 → n. By Proposition 3.1, the mapping H : X → Y is additive. Now, let T : X → Y be 
another additive mapping satistify (4.2) then we have 

 
 

which tends to zero as q→ ∞ for all x ∈ X. So we can conclude that  for all x ∈ X. This proves the 
uniqueness of H. Thus the mapping H : X → Y is additive mapping satisfying (4.2).  
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Theorem 4.2. Suppose q < 1, θ be positive real numbers and f : X → Y be an odd mapping such that 

 
for all xj, yj,zj ∈ X for all j = 1 → n 

. Then there exists a unique additive mapping H : X → Y such that 

 

 
for all x ∈ X. 
Notice that: Form (4.3) we have  

 
 
for all x ∈ X. The rest of the proof is similar to the proof of Theorem 4.1. 
 
Theorem 4.3. Suppose q > p−1 with p ≥ 3, θ be non-negative real and f : X → Y be an odd mapping such that 

 
 

for all xj, yj,zj ∈ X for all j = 1 → n 

. Then there exists a unique additive mapping H : X → Y such that 

 
 

for all x ∈ X. 
Proof. Assume that f : X → Y satisfies (4.12). 

We replacing  by  in (4.12), we have 

 
for all x ∈ X. So 
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Hence we have 

 
 

for all nongnegative m and l with m > l, ∀x ∈ X. It follows from (4.16) that the sequence 

 is a cauchy sequence for all x ∈ X. Since Y is a Banach space, the 

sequence  coverges. 
So one can define the mapping H : X → Y by 

 
for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (4.16), we have (4.13). The rest of the Prooft is 
similar to the Proof of the Theorem 4.1. 

 
Theorem 4.4. Suppose q < p−1 with p ≥ 3, θ be non-negative real and f : X → Y be an odd mapping such that 

 
for all xj, yj,zj ∈ X for all j = 1 → n 

. Then there exists a unique additive mapping H : X → Y such that 

 
for all x ∈ X.  
 
The rest of the Prooft is similar to the Proof of the Theorem 4.1.  
 
5.Establishing solutions to functional inequality (1.2) related to the type of Cauchy additive functional equation  
 
Now, we first study the solutions of (1.2). Note that for this inequality, X is a normed space with norm · X and that Y is 
a Banach space with norm · Y . Under this setting, we can show that the mappings satisfying (1.2) is Cauchy additive. 
These results are give in the following.  
 
Theorem 5.1. Suppose q > 1, θ be non-negative real and f : X → Y be an odd mapping such that 
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for all xj, yj,zj ∈ X for all j = 1 → n 

. Then there exists a unique additive mapping H : X → Y such that 

 
for all x ∈ X. 
The rest of the Prooft is similar to the Proof of the Theorem 4.1. 
 
Theorem 5.2. Suppose q < 1, θ be positive real numbers and f : X → Y be a mapping such that 

 
for all xj, yj,zj ∈ X for all j = 1 → n 

. Then there exists a unique additive mapping H : X → Y such that 

 

 
for all x ∈ X. 
The rest of the proof is similar to the proof of Theorem 4.1 and 4.2. 
 

Theorem 5.3. Suppose q > p−1 with p ≥ 3, θ be non-negative real and f : X → Y be an odd mapping such that 

 
for all xj, yj,zj ∈ X for all j = 1 → n 

. Then there exists a unique additive mapping H : X → Y such that 

 
for all x ∈ X. 
Proof. Assume that f : X → Y satisfies (5.5). 

We replacing  by  in (5.5), we have 

 
 
for all x ∈ X. The rest of the Prooft is similar to the Proof of the Theorem 4.1 and 4.3. 

 
Theorem 5.4. Suppose q < p−1 with p ≥ 3, θ be non-negative real and f : X → Y be an odd mapping such that 
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for all xj, yj,zj ∈ X for all j = 1 → n 

. Then there exists a unique additive mapping H : X → Y such that 

 
for all x ∈ X.  
The rest of the Prooft is similar to the Proof of the Theorem 4.1 and 4.4.  
 
6. Establishing solutions to functional inequality (1.3) related to the type of Cauchy-Jensen additive functional equation 
Now, we first study the solutions of (1.3). Note that for this inequality, X is a normed space with norm · X and that Y is 
a Banach space with norm · Y . Under this setting, we can show that the mappings satisfying (1.3) is Cauchy-Jensen 
additive. These results are give in the following.  
 
Theorem 6.1. Suppose q > 1, θ be non-negative real, f(0) = 0 and f : X → Y be a mapping such that 

 
 
for all xj , yj , zj ∈ X for all j = 1 → n. Then there exists a unique additive mapping H : X → Y such that 

 
 
for all x ∈ X. 
Proof. Assume that f : X → Y satisfies (6.1). 

We replacing  by  in (6.1), we have 

 
 
for all x ∈ X. So 

 

The rest of the proof is similar to the proof of Theorem 4.1.   
 
Theorem 6.2. Suppose q < 1, θ be positive real numbers and f: X → Y be a mapping such that 

 
for all xj, yj,zj ∈ X for all j = 1 → n 

 
for all x ∈ X. 

The rest of the proof is similar to the proof of Theorem 4.1 and 4.2. 
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5. CONCLUSION 
In this paper I have given three general functional inequalities and I have shown that their solutions are determined on  
normalized spaces and take values in Banach spaces. 
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