

GENERALIZED ESTABLISH JENSEN TYPE ADDITIVE (λ_1, λ_2) -FUNCTIONAL INEQUALITIES WITH $3k$ -VARIABLES IN (α_1, α_2) -HOMOGENEOUS F-SPACES

LY VAN AN*

**Faculty of Mathematics Teacher Education, Tay Ninh University, Tay Ninh, Vietnam.*

***Corresponding Author:**

lyvanan145@gmail.com, lyvananvietnam@gmail.com.

Abstract

In this paper, we study to solve two additives (λ_1, λ_2) -functional inequalities with $3k$ -variables in (α_1, α_2) -homogeneous F-spaces. Then we will show that the solutions of the first and second inequalities are additive mappings. That is the main result in this paper.

Keywords: Complex Banach space, Hyers-Ulam-Rassias stability, Additive (λ_1, λ_2) -Functional Inequalities, (α_1, α_2) -Homogeneous F spaces.

Mathematics Subject Classification: Primary 4610, 4710, 39B62, 39B72,

1. INTRODUCTION

Let X and Y be a normed spaces on the same field K , and $f : X \rightarrow Y$. We use the notation $\|\cdot\|$ for all the norm on both X and Y . In this paper, we investigate some additive (λ_1, λ_2) -functional inequality in (α_1, α_2) -homogeneous F -spaces. In fact, when X is a α_1 -homogeneous F -spaces and that Y is a α_2 -homogeneous F -spaces we solve and prove the complex Banach space of two following additive (λ_1, λ_2) -functional inequality.

$$\begin{aligned}
 & \left\| f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) + f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j - \sum_{j=1}^k z_j\right) - 2 \sum_{j=1}^k f(x_j) - 2 \sum_{j=1}^k f(y_j) \right\|_Y \\
 & \leq \left\| \lambda_1 \left(f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(x_j) - \sum_{j=1}^k f(y_j) - \sum_{j=1}^k f(z_j) \right) \right\|_Y \\
 & + \left\| \lambda_2 \left(f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j - \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(x_j) - \sum_{j=1}^k f(y_j) + \sum_{j=1}^k f(z_j) \right) \right\|_Y \quad (1.1)
 \end{aligned}$$

1

and when we change the role of the function inequality (1.1), we continue to prove the following function inequality.

$$\begin{aligned}
 & \left\| f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(x_j) - \sum_{j=1}^k f(y_j) - \sum_{j=1}^k f(z_j) \right\| \\
 & \leq \left\| \lambda_1 \left(f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) + \sum_{j=1}^k f(x_j - y_j) - \sum_{j=1}^k f(z_j) - 2 \sum_{j=1}^k f(x_j) \right) \right\| \\
 & + \left\| \lambda_2 \left(f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(x_j + y_j) - \sum_{j=1}^k f(z_j) \right) \right\| \quad (1.2)
 \end{aligned}$$

where λ_1, λ_2 are fixed nonzero complex numbers with $G(\lambda_1, \lambda_2)$ -functional inequality. $\alpha_1, \alpha_2 \in \mathbb{R}^+, \alpha_1, \alpha_2 \leq 1$.

$$\left(\mathbb{C} \setminus \{0\}, Y \right) = \{G : \mathbb{C} \setminus \{0\} \rightarrow Y, G(\lambda_1, \lambda_2) = 1 - |\lambda_1|^{\alpha_2} - |\lambda_2|^{\alpha_2} < 1\}$$

The Hyers-Ulam stability was first investigated for functional equation of Ulam in [1] concerning the stability of group homomorphisms.

The functional equation

$$f(x + y) = f(x) + f(y)$$

is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping.

The Hyers [2] gave first affirmative partial answer to the equation of Ulam in Banach spaces. After that, Hyers' Theorem was generalized by Aoki [3] additive mappings and by Rassias [4] for linear mappings considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [5] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

The Hyers-Ulam stability for functional inequalities has been investigated such as in [5], [6], [7]. Găvruta showed that if it satisfies the functional inequality

$$\|2f(x) + 2f(y) - f(x - y)\| \leq \|f(x + y)\| \quad (1.3)$$

Then f satisfies the Jordan-von Newman functional equation

$$2f(x) + 2f(y) = f(x + y) + f(x - y) \quad (1.4)$$

. Găvruta [6] and Fechner [8] proved the Hyers-Ulam stability of the functional inequality (1.3).

Next Choonkil Park [9] proved the Hyers-Ulam stability of additive β -functional inequalities. Recently, the author has studied the addition inequalities of mathematicians in the world as [5] [8] [10] -[24] and I have introduced two general additive function inequalities (1.1) and (1.2) based on the additive function inequalities and the following additive functional equations

$$\left\| \sum_{j=1}^n f(x_j) + \sum_{j=1}^n f\left(\frac{x_{n+j}}{n}\right) \right\| \leq \left\| kf\left(\frac{\sum_{j=1}^n x_j}{k} + \frac{\sum_{j=1}^n x_{n+j}}{n \cdot k}\right) \right\|, |n| > |k|. \quad (1.5)$$

Next

$$\begin{aligned}
 & \left\| f(x_1 + x_2 + \dots + x_n) - f(x_1) - f(x_2 + \dots + x_n) \right\|_{\mathbf{Y}} \\
 & \leq \left\| \beta_1 \left(f(x_1 + x_2 + \dots + x_n) - f(x_1 - x_2 - \dots - x_n) - 2f(x_1) \right) \right\|_{\mathbf{Y}} \\
 & + \left\| \beta_2 \left(2f\left(\frac{x_1 + x_2 + \dots + x_n}{2}\right) - f(x_1) - f(x_2 + \dots + x_n) \right) \right\|_{\mathbf{Y}} \quad (1.6)
 \end{aligned}$$

Next

$$\left\| \sum_{j=1}^k f(x_j) + \sum_{j=1}^k f(y_j) + \sum_{j=1}^k f(z_j) \right\|_{\mathbf{Y}} \leq \left\| 2kf\left(\frac{\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j}{2k}\right) \right\|_{\mathbf{Y}}, \quad (1.7)$$

And

$$\left\| \sum_{j=1}^k f(x_j) + \sum_{j=1}^k f(y_j) + \sum_{j=1}^k f(z_j) \right\|_{\mathbf{Y}} \leq \left\| f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) \right\|_{\mathbf{Y}}, \quad (1.8)$$

And

$$\left\| \sum_{j=1}^k f(x_j) + \sum_{j=1}^k f(y_j) + 2k \sum_{j=1}^k f(z_j) \right\|_{\mathbf{Y}} \leq \left\| 2kf\left(\frac{\sum_{j=1}^k x_j + \sum_{j=1}^k y_j}{2k} + \sum_{j=1}^k z_j\right) \right\|_{\mathbf{Y}}. \quad (1.9)$$

Final

$$f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) + f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j - \sum_{j=1}^k z_j\right) - 2 \sum_{j=1}^k f(x_j) - 2 \sum_{j=1}^k f(y_j) = 0 \quad (1.10)$$

And

$$f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - f\left(\sum_{j=1}^k x_j - \sum_{j=1}^k y_j - \sum_{j=1}^k z_j\right) - 2 \sum_{j=1}^k f(y_j) - 2 \sum_{j=1}^k f(z_j) = 0 \quad (1.11)$$

in Non-Archimedean Banach spaces and on the complex Banach space. When proving the additive function inequalities and the additive function equations on the complex Banach space, I continue to study the above additive (λ_1, λ_2) - function inequality on the (α_1, α_2) -homogeneous F -spaces. i.e., the a-functional inequalities with $3k$ -variables. Under suitable assumptions on spaces \mathbf{X} and \mathbf{Y}

, we will prove that the mappings satisfying the (λ_1, λ_2) -functional inequalities (1.1) or (1.2). Thus, the results in this paper are generalization of those in [7] [9] [17] [25] [26] [27] for a-functional inequalities with $3k$ -variables. The paper is organized as follows: In section preliminaries we remind a basic property such as We only redefine the solution definition of the equation of the additive function. In this paper, I construct the additive Jensen (λ_1, λ_2) -function inequality on the (α_1, α_2) -homogeneous F -spaces with an unlimited number of variables to facilitate the construction of functional equations on the infinite-dimensional space. The method is that I rely on the ideas of mathematicians around the world See ([1]-[28]). This is a bright horizon for the function inequality. The paper is organized as follows: In section preliminaries we remind a basic property such as We only redefine the solution definition of the equation of the additive function and F^* -space .

Section 3: Establishing the solution for (1.1) in (α_1, α_2) -homogeneous F -spaces.

Section 4: Establishing the solution for (1.2) in (α_1, α_2) -homogeneous F -spaces.

2. Preliminaries

1. F -spaces.

Definition 2.1.

Let X be a complex linear space. A nonnegative valued function $\|\cdot\|$ is an F -norm if it satisfies the following conditions:

- (1) $\|x\| = 0$ if and only if $x = 0$;
- (2) $\|\lambda x\| = \|x\|$ for all $x \in X$ and all λ with $|\lambda| = 1$;
- (3) $\|x + y\| \leq \|x\| + \|y\|$ for all $x, y \in X$;
- (4) $\|\lambda_n x\| \rightarrow 0$, $\lambda_n \rightarrow 0$;
- (5) $\|\lambda x_n\| \rightarrow 0$, $x_n \rightarrow 0$.
- (6) $\|\lambda_n x_n\| \rightarrow 0$, $\lambda_n \rightarrow 0$, $x_n \rightarrow 0$.

geneous ($\beta > 0$) if $\|tx\| = |t|^\beta \|x\|$ for all $x \in X$ and for all $t \in \mathbb{C}$ and $(X, \|\cdot\|)$ is called α -homogeneous F -space

2.2 Solutions of the inequalities.

$$f(x + y) = f(x) + f(y)$$

is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an *additive mapping*.

3. ESTABLISHING THE SOLUTION FOR (1.1) IN (α_1, α_2) -HOMOGENEOUS F -SPACES

3.1. Condition for existence of solutions for Equation (1.1). Here pay attention that X is a α_1 -homogeneous F -spaces and that Y is a α_2 -homogeneous F -spaces.

Lemma 3.1. If a mapping $f: X \rightarrow Y$ satisfies

$$\begin{aligned} & \left\| f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) + f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j - \sum_{j=1}^k z_j\right) - 2 \sum_{j=1}^k f(x_j) - 2 \sum_{j=1}^k f(y_j) \right\|_Y \\ & \leq \left\| \lambda_1 \left(f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(x_j) - \sum_{j=1}^k f(y_j) - \sum_{j=1}^k f(z_j) \right) \right\|_Y \\ & + \left\| \lambda_2 \left(f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j - \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(x_j) - \sum_{j=1}^k f(y_j) + \sum_{j=1}^k f(z_j) \right) \right\|_Y \end{aligned} \quad (3.1)$$

for all $x_j, y_j, z_j \in X$ for $j = 1 \rightarrow n$, then $f: X \rightarrow Y$ is additive

Proof. Assume that $f: X \rightarrow Y$ satisfies (3.1).

We replacing $(x_1, \dots, x_k, y_1, \dots, y_k, z_1, \dots, z_k)$ by $(0, \dots, 0, 0, \dots, 0, 0, \dots, 0)$ in (3.1), we have

$$\|(4k - 2)f(0)\| \leq \|\lambda_1(3k - 1)f(0)\| + \|\lambda_2(k - 1)f(0)\|$$

Therefore

$$\text{So } f(0) = 0$$

Replacing $(x_1, \dots, x_k, y_1, y_2, \dots, y_k, z_1, \dots, z_k)$ by $(0, \dots, 0, 0, 0, \dots, 0, z, \dots, 0)$ we get

$$\|f(y) + f(-y)\| \leq 0$$

and so f is an odd mapping. Replacing $(x_1, \dots, x_k, y_1, \dots, y_k, z_1, \dots, z_k)$ by $(x_1, \dots, x_k, 0, \dots, 0, z_1, \dots, z_k)$ in (3.1), we have

$$\begin{aligned} & \left\| f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(z_j) - \sum_{j=1}^k f(x_j) \right\| \\ & \leq \left\| \lambda_1 \left(f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(x_j) - \sum_{j=1}^k f(z_j) \right) \right\| \\ & + \left\| \lambda_2 \left(f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(x_j) - \sum_{j=1}^k f(z_j) \right) \right\| \end{aligned} \quad (3.2)$$

And so

$$(1 - |\lambda_1|^{\alpha_2} - |\lambda_2|^{\alpha_2}) \left\| f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(z_j) - \sum_{j=1}^k f(x_j) \right\| \leq 0 \quad (3.3)$$

And so

$$f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k z_j\right) = \sum_{j=1}^k f(x_j) + \sum_{j=1}^k f(z_j)$$

for all $x_j, z_j \in \mathbf{X}$ for $j = 1 \rightarrow k$, as we expected. Q

3.2. Constructing a solution for (1.1). Now, we first study the solutions of (1.1). Note that for these inequalities, when \mathbf{X} is a α_1 -homogeneous F -spaces and that \mathbf{Y} is a α_2 -homogeneous F -spaces. Under this setting, we can show that the mapping satisfying (1.1) is additive. These results are give in the following.

Theorem 3.2. suppose $r > \frac{\alpha_2}{\alpha_1}$, θ be nonnegative real number, and let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping such that

$$\begin{aligned} & \left\| f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) + \sum_{j=1}^k f(x_j - y_j) - \sum_{j=1}^k f(z_j) - 2 \sum_{j=1}^k f(x_j) \right\| \\ & \leq \left\| \lambda_1 \left(f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(x_j) - \sum_{j=1}^k f(y_j) - \sum_{j=1}^k f(z_j) \right) \right\| \\ & + \left\| \lambda_2 \left(f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(x_j + y_j) - \sum_{j=1}^k f(z_j) \right) \right\| \\ & + \theta \left(\sum_{j=1}^k \|x_j\|^r + \sum_{j=1}^k \|y_j\|^r + \sum_{j=1}^k \|z_j\|^r \right) \end{aligned} \quad (3.4)$$

for all $x_j, y_j, z_j \in \mathbf{X}$ for all $j = 1 \rightarrow n$. Then there exists a unique mapping $\psi: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$\|f(x) - \psi(x)\| \leq \frac{2k}{(1 - |\lambda_1|^{\alpha_2} - |\lambda_2|^{\alpha_2})((2k)^{\alpha_1 r} - (2k)^{\alpha_2})} \theta \|x\|^r. \quad (3.5)$$

for all $x \in \mathbf{X}$

for all x or all $x \in \mathbf{X}$ Proof. Assume that $f: \mathbf{X} \rightarrow \mathbf{Y}$ satisfies (3.4).

Replacing $(x_1, \dots, x_k, y_1, \dots, y_k, z_1, \dots, z_k)$ by $(0, \dots, 0, 0, \dots, 0, 0, \dots, 0)$ in (3.4), we have

So $f(0) = 0$

Next we replacing $(x_1, \dots, x_k, y_1, \dots, y_k, z_1, \dots, z_k)$ by $(x, \dots, x, 0, \dots, 0, x, \dots, x)$ in (3.4), we get

$$\|f(2kx) - 2kf(x)\| \leq \frac{2k\theta}{(1 - |\lambda_1|^{\alpha_2} - |\lambda_2|^{\alpha_2})} \|x\|^r \quad (3.6)$$

for all $x \in \mathbf{X}$. Thus

$$\|f(x) - 2kf\left(\frac{x}{2k}\right)\| \leq \frac{2k\theta}{|2k|^{\alpha_1 r} (1 - |\lambda_1|^{\alpha_2} - |\lambda_2|^{\alpha_2})} \|x\|^r \quad (3.7)$$

for all $x \in X$. So

$$\begin{aligned} \left\| (2k)^l f\left(\frac{x}{(2k)^l}\right) - (2k)^p f\left(\frac{x}{(2k)^p}\right) \right\| &\leq \sum_{j=l}^{p-1} \left\| (2k)^j f\left(\frac{x}{(2k)^j}\right) - (2k)^{j+1} f\left(\frac{x}{(2k)^{j+1}}\right) \right\| \\ &\leq \frac{2k\theta}{|2k|^{\alpha_1 r} (1 - |\lambda_1|^{\alpha_2} - |\lambda_2|^{\alpha_2})} \sum_{j=l}^{p-1} \frac{(2k)^{\alpha_2 j}}{(2k)^{\alpha_1 r j}} \|x\|^r \quad (3.8) \end{aligned}$$

for all nonnegative integers p, l with $p > l$ and all $x \in X$. It follows from (3.8) that

the sequence $\{(2k)^n f\left(\frac{x}{(2k)^n}\right)\}$ is a cauchy sequence for all $x \in X$. Since Y is complete,

the sequence $\{(2k)^n f\left(\frac{x}{(2k)^n}\right)\}$ converges. So one can define the mapping $\phi: X \rightarrow Y$ by

$\phi(x) := \lim_{n \rightarrow \infty} (2k)^n f\left(\frac{x}{(2k)^n}\right)$ for all $x \in X$. Moreover, letting $l = 0$ and passing the limit $m \rightarrow \infty$ in (3.8), we get (3.5). It follows from (3.4) that

$$\begin{aligned} &\left\| \psi\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) + \sum_{j=1}^k \psi(x_j - y_j) - \sum_{j=1}^k \psi(z_j) - 2 \sum_{j=1}^k \psi(x_j) \right\| \\ &= \lim_{n \rightarrow \infty} (2k)^{\alpha_2 n} \left\| f\left(\frac{1}{(2k)^n} \left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j \right) \right) + \sum_{j=1}^k f\left(\frac{x_j - y_j}{(2k)^n}\right) - \sum_{j=1}^k f\left(\frac{1}{(2k)^n} z_j\right) \right. \\ &\quad \left. - 2 \sum_{j=1}^k f\left(\frac{1}{(2k)^n} x_j\right) \right\| \\ &\leq \lim_{n \rightarrow \infty} \left(\left\| \lambda_1 \left(f\left(\frac{1}{(2k)^n} \left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j \right) \right) - \sum_{j=1}^k f\left(\frac{1}{(2k)^n} x_j\right) - \sum_{j=1}^k f\left(\frac{1}{(2k)^n} y_j\right) \right. \right. \right. \\ &\quad \left. \left. \left. - \sum_{j=1}^k f\left(\frac{1}{(2k)^n} z_j\right) \right\| \right. \right. \\ &\quad \left. \left. + \left\| \lambda_2 \left(f\left(\frac{1}{(2k)^n} \left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j \right) \right) - \sum_{j=1}^k f\left(\frac{x_j + y_j}{(2k)^n}\right) - \sum_{j=1}^k f\left(\frac{1}{(2k)^n} z_j\right) \right) \right\| \right) \right. \\ &\quad \left. + \lim_{n \rightarrow \infty} \frac{|2k|^{\alpha_2 n}}{|2k|^{\alpha_1 r}} \theta \left(\sum_{j=1}^k \|x_j\|^r + \sum_{j=1}^k \|y_j\|^r + \sum_{j=1}^k \|z_j\|^r \right) \right) \\ &= \left\| \lambda_1 \left(\psi\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k \psi(x_j) - \sum_{j=1}^k \psi(y_j) - \sum_{j=1}^k \psi(z_j) \right) \right\| \\ &\quad + \left\| \lambda_2 \left(\psi\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k \psi(x_j + y_j) - \sum_{j=1}^k \psi(z_j) \right) \right\| \quad (3.9) \end{aligned}$$

for all $x_j, y_j, z_j \in X$ for all $j = 1 \rightarrow n$. Hence

$$\begin{aligned} &\left\| \psi\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) + \sum_{j=1}^k \psi(x_j - y_j) - \sum_{j=1}^k \psi(z_j) - 2 \sum_{j=1}^k \psi(x_j) \right\| \\ &\leq \left\| \lambda_1 \left(\psi\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k \psi(x_j) - \sum_{j=1}^k \psi(y_j) - \sum_{j=1}^k \psi(z_j) \right) \right\| \\ &\quad + \left\| \lambda_2 \left(\psi\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k \psi(x_j + y_j) - \sum_{j=1}^k \psi(z_j) \right) \right\| \quad (3.10) \end{aligned}$$

for all $x_j, y_j, z_j \in X$ for all $j = 1 \rightarrow n$. So by lemma 3.1 it follows that the mapping $\psi: X \rightarrow Y$ is additive. Now we need to prove unic

$$\begin{aligned} \|\psi(x) - \phi'(x)\| &= (2k)^{\alpha_2 n} \left\| \psi\left(\frac{x}{(2k)^n}\right) - \phi'\left(\frac{x}{(2k)^n}\right) \right\| \\ &\leq (2k)^{\alpha_2 n} \left(\left\| \psi\left(\frac{x}{(2k)^n}\right) - f\left(\frac{x}{(2k)^n}\right) \right\| + \left\| \phi'\left(\frac{x}{(2k)^n}\right) - f\left(\frac{x}{(2k)^n}\right) \right\| \right) \\ &\leq \frac{4k \cdot (2k)^{\alpha_2 n}}{(1 - |\lambda_1|^{\alpha_2} - |\lambda_2|^{\alpha_2}) (2k)^{\alpha_1 n r} ((2k)^{\alpha_1 r} - (2k)^{\alpha_2})} \theta \|x\|^r \quad (3.11) \end{aligned}$$

which tends to zero as $n \rightarrow \infty$ for all $x \in X$. So, we can conclude that $\psi(x) = \varphi(x)$ for all $x \in X$. This proves thus the mapping $\psi: X \rightarrow Y$ is a unique mapping satisfying (3.5) as we expected.

Theorem 3.3. suppose $r < \frac{\alpha_2}{\alpha_1}$, θ be nonnegative real number, and let $f: X \rightarrow Y$ be a mapping such that

$$\begin{aligned}
 & \left\| f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) + \sum_{j=1}^k f(x_j - y_j) - \sum_{j=1}^k f(z_j) - 2 \sum_{j=1}^k f(x_j) \right\| \\
 & \leq \left\| \lambda_1 \left(f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(x_j) - \sum_{j=1}^k f(y_j) - \sum_{j=1}^k f(z_j) \right) \right\| \\
 & \quad + \left\| \lambda_2 \left(f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(x_j + y_j) - \sum_{j=1}^k f(z_j) \right) \right\| \\
 & \quad + \theta \left(\sum_{j=1}^k \|x_j\|^r + \sum_{j=1}^k \|y_j\|^r + \sum_{j=1}^k \|z_j\|^r \right)
 \end{aligned} \tag{3.12}$$

for all $x_j, y_j, z_j \in X$ for all $j = 1 \rightarrow n$. Then there exists a unique mapping $\psi: X \rightarrow Y$ such that

$$\left\| f(x) - \psi(x) \right\| \leq \frac{2k}{(1 - |\lambda_1|^{\alpha_2} - |\lambda_2|^{\alpha_2})((2k)^{\alpha_2} - (2k)^{\alpha_1 r})} \theta \|x\|^r. \tag{3.13}$$

for all $x \in X$

The rest of the proof is similar to the proof of Theorem 3.2.

4. ESTABLISHING THE SOLUTION FOR (1.2) IN (α_1, α_2) -HOMOGENEOUS F -SPACES

4.1. Condition for existence of solutions for Equation (1.2). Here pay attention that X is a α_1 -homogeneous F -spaces and that Y is a α_2 -homogeneous F -spaces.

Lemma 4.1. Let a mapping $f: X \rightarrow Y$ satifies

$$\begin{aligned}
 & \left\| f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(x_j) - \sum_{j=1}^k f(y_j) - \sum_{j=1}^k f(z_j) \right\| \\
 & \leq \left\| \lambda_1 \left(f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) + \sum_{j=1}^k f(x_j - y_j) - \sum_{j=1}^k f(z_j) - 2 \sum_{j=1}^k f(x_j) \right) \right\| \\
 & \quad + \left\| \lambda_2 \left(f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(x_j + y_j) - \sum_{j=1}^k f(z_j) \right) \right\|
 \end{aligned} \tag{4.1}$$

We replacing $(x_1, \dots, x_k, y_1, \dots, y_k, z_1, \dots, z_k)$ by $(0, \dots, 0, 0, \dots, 0, 0, \dots, 0)$ in (4.1), we have

$$\left\| (3k - 1)f(0) \right\| \leq \left\| \lambda_1(2k - 1)f(0) \right\| + \left\| \lambda_2(2k - 1)f(0) \right\|$$

Therefore

$$\left(\left| 3k - 1 \right|^{\beta_2} - \left| \lambda_1(2k - 1) \right|^{\beta_2} - \left| \lambda_2(2k - 1) \right|^{\beta_2} \right) \|f(0)\| \leq 0$$

So $f(0) = 0$.

Replacing $(x_1, \dots, x_k, y_1, y_2, \dots, y_k, z_1, \dots, z_k)$ by $(0, \dots, 0, -y, 0, \dots, 0, 0, \dots, 0)$, in (4.1), we get

$$\left\| f(-y) - f(-y) \right\| - \left| \lambda_1 \right| \left\| f(-y) + f(y) \right\| - \left| \lambda_2 \right| \left\| f(-y) - f(-y) \right\| \leq 0$$

and so f is an odd mapping.

Replacing $(x_1, \dots, x_k, y_1, \dots, y_k, z_1, \dots, z_k)$ by $(x_1, \dots, x_k, 0, \dots, 0, z_1, \dots, z_k)$ in (4.1) we have

$$\begin{aligned}
 & \left\| f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(z_j) - \sum_{j=1}^k f(x_j) \right\| \\
 & \leq \left\| \lambda_1 \left(f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(x_j) - \sum_{j=1}^k f(z_j) \right) \right\| \\
 & \quad + \left\| \lambda_2 \left(f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(x_j) - \sum_{j=1}^k f(z_j) \right) \right\| \tag{4.2}
 \end{aligned}$$

And so

$$(1 - |\lambda_1|^{\beta_2} - |\lambda_2|^{\beta_2}) \left\| f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(z_j) - \sum_{j=1}^k f(x_j) \right\| \leq 0 \tag{4.3}$$

And so

$$f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k z_j\right) = \sum_{j=1}^k f(x_j) + \sum_{j=1}^k f(z_j)$$

for all $x_j, z_j \in X$ for $j = 1 \rightarrow k$, as we expected.

4.2. Constructing a solution for (1.2). Now, we first study the solutions of (1.2). Note that for these inequalities, when \mathbf{X} is a α_1 -homogeneous F -spaces and that \mathbf{Y} is a α_2 -homogeneous F -spaces. Under this setting, we can show that the mapping satisfying (1.2) is additive. These results are give in the following.

Theorem 4.2. suppose $r > \frac{\alpha_2}{\alpha_1}$, θ be nonnegative real number, and let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping such that

$$\begin{aligned}
 & \left\| f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(x_j) - \sum_{j=1}^k f(y_j) - \sum_{j=1}^k f(z_j) \right\| \\
 & \leq \left\| \lambda_1 \left(f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) + \sum_{j=1}^k f(x_j - y_j) - \sum_{j=1}^k f(z_j) - 2 \sum_{j=1}^k f(x_j) \right) \right\| \\
 & \quad + \left\| \lambda_2 \left(f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(x_j + y_j) - \sum_{j=1}^k f(z_j) \right) \right\| \\
 & \quad + \theta \left(\sum_{j=1}^k \|x_j\|^r + \sum_{j=1}^k \|y_j\|^r + \sum_{j=1}^k \|z_j\|^r \right) \tag{4.4}
 \end{aligned}$$

for all $x_j, y_j, z_j \in X$ for all $j = 1 \rightarrow n$. Then there exists a unique mapping $\psi: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$\left\| f(x) - \psi(x) \right\| \leq \frac{2k}{(1 - |\lambda_1|^{\alpha_2} - |\lambda_2|^{\alpha_2})((2k)^{\alpha_1 r} - (2k)^{\alpha_2})} \theta \|x\|^r. \tag{4.5}$$

for all $x \in X$

Proof. Assume that $f: \mathbf{X} \rightarrow \mathbf{Y}$ satisfies (4.4).

Replacing $(x_1, \dots, x_k, y_1, \dots, y_k, z_1, \dots, z_k)$ by $(0, \dots, 0, 0, \dots, 0, 0, \dots, 0)$ in (4.4), we have

So $f(0) = 0$.

Next we replacing $(x_1, \dots, x_k, y_1, \dots, y_k, z_1, \dots, z_k)$ by $(x, \dots, x, 0, \dots, 0, x, \dots, x)$ in (4.4), we get

$$\left\| f(2kx) - 2kf(x) \right\| \leq \frac{2k\theta}{(1 - |\lambda_1|^{\alpha_2} - |\lambda_2|^{\alpha_2})} \|x\|^r \quad (4.6)$$

for all $x \in X$. Thus

$$\left\| f(x) - 2kf\left(\frac{x}{2k}\right) \right\| \leq \frac{2k\theta}{|2k|^{\alpha_1 r} (1 - |\lambda_1|^{\alpha_2} - |\lambda_2|^{\alpha_2})} \|x\|^r \quad (4.7)$$

for all $x \in X$. So

$$\begin{aligned} \left\| (2k)^l f\left(\frac{x}{(2k)^l}\right) - (2k)^p f\left(\frac{x}{(2k)^p}\right) \right\| &\leq \sum_{j=l}^{p-1} \left\| (2k)^j f\left(\frac{x}{(2k)^j}\right) - (2k)^{j+1} f\left(\frac{x}{(2k)^{j+1}}\right) \right\| \\ &\leq \frac{2k\theta}{|2k|^{\alpha_1 r} (1 - |\lambda_1|^{\alpha_2} - |\lambda_2|^{\alpha_2})} \sum_{j=l}^{p-1} \frac{(2k)^{\alpha_2 j}}{(2k)^{\alpha_1 r j}} \|x\|^r \end{aligned} \quad (4.8)$$

for all nonnegative integers p, l with $p > l$ and all $x \in X$. It follows from (4.8) that

the sequence $\{(2k)^n f\left(\frac{x}{(2k)^n}\right)\}$ is a cauchy sequence for all $x \in X$. Since Y is complete,

the sequence $\{(2k)^n f\left(\frac{x}{(2k)^n}\right)\}$ converges. So one can define the mapping $\phi: X \rightarrow Y$ by

$\phi(x) := \lim_{n \rightarrow \infty} (2k)^n f\left(\frac{x}{(2k)^n}\right)$ for all $x \in X$. Moreover, letting $l = 0$ and passing the limit $m \rightarrow \infty$ in (4.8), we get (4.5). It follows from (4.4) that

$$\begin{aligned} &\left\| \psi\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k \psi(x_j) - \sum_{j=1}^k \psi(y_j) - \sum_{j=1}^k \psi(z_j) \right\| \\ &= \lim_{n \rightarrow \infty} (2k)^{\alpha_2 n} \left\| f\left(\frac{1}{(2k)^n} \left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j \right)\right) - \sum_{j=1}^k f\left(\frac{x_j}{(2k)^n}\right) - \sum_{j=1}^k f\left(\frac{y_j}{(2k)^n}\right) \right. \\ &\quad \left. - \sum_{j=1}^k f\left(\frac{z_j}{(2k)^n}\right) \right\| \\ &\leq \lim_{n \rightarrow \infty} \left(\left\| \lambda_1 \left(f\left(\frac{1}{(2k)^n} \left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j \right)\right) + \sum_{j=1}^k f\left(\frac{x_j - y_j}{(2k)^n}\right) - \sum_{j=1}^k f\left(\frac{1}{(2k)^n} z_j\right) \right. \right. \right. \\ &\quad \left. \left. \left. - 2 \sum_{j=1}^k f\left(\frac{1}{(2k)^n} x_j\right) \right) \right\| \\ &\quad + \left\| \lambda_2 \left(f\left(\frac{1}{(2k)^n} \left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j \right)\right) - \sum_{j=1}^k f\left(\frac{x_j + y_j}{(2k)^n}\right) - \sum_{j=1}^k f\left(\frac{1}{(2k)^n} z_j\right) \right) \right\| \right) \\ &\quad + \lim_{n \rightarrow \infty} \frac{|2k|^{\alpha_2 n}}{|2k|^{n\alpha_1 r}} \theta \left(\sum_{j=1}^k \|x_j\|^r + \sum_{j=1}^k \|y_j\|^r + \sum_{j=1}^k \|z_j\|^r \right) \\ &= \left\| \lambda_1 \left(\psi\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) + \sum_{j=1}^k \psi(x_j - y_j) - \sum_{j=1}^k \psi(z_j) - 2 \sum_{j=1}^k \psi(x_j) \right) \right\| \\ &\quad + \left\| \lambda_2 \left(\psi\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k \psi(x_j + y_j) - \sum_{j=1}^k \psi(z_j) \right) \right\| \end{aligned} \quad (4.9)$$

for all $x_j, y_j, z_j \in X$ for all $j = 1 \rightarrow n$. Hence

$$\begin{aligned}
 & \left\| \psi\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k \psi(x_j) - \sum_{j=1}^k \psi(y_j) - \sum_{j=1}^k \psi(z_j) \right\| \\
 & \leq \left\| \lambda_1 \left(\psi\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) + \sum_{j=1}^k \psi(x_j - y_j) - \sum_{j=1}^k \psi(z_j) - 2 \sum_{j=1}^k \psi(x_j) \right) \right\| \\
 & + \left\| \lambda_2 \left(\psi\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k \psi(x_j + y_j) - \sum_{j=1}^k \psi(z_j) \right) \right\| \quad (4.10)
 \end{aligned}$$

for all $x_j, y_j, z_j \in X$ for all $j = 1 \rightarrow n$. So by lemma 4.1 it follows that the mapping $\psi: \mathbf{X} \rightarrow \mathbf{Y}$ is additive. Now we need to prove uniqueness, suppose $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ is also an additive mapping that satisfies (4.5). Then we have

$$\begin{aligned}
 \left\| \psi(x) - \phi'(x) \right\| &= (2k)^{\alpha_2 n} \left\| \psi\left(\frac{x}{(2k)^n}\right) - \phi'\left(\frac{x}{(2k)^n}\right) \right\| \\
 &\leq (2k)^{\alpha_2 n} \left(\left\| \psi\left(\frac{x}{(2k)^n}\right) - f\left(\frac{x}{(2k)^n}\right) \right\| + \left\| \phi'\left(\frac{x}{(2k)^n}\right) - f\left(\frac{x}{(2k)^n}\right) \right\| \right) \\
 &\leq \frac{4k \cdot (2k)^{\alpha_2 n}}{(1 - |\lambda_1|^{\alpha_2} - |\lambda_2|^{\alpha_2})(2k)^{\alpha_1 n r} ((2k)^{\alpha_1 r} - (2k)^{\alpha_2})} \theta \|x\|^r \quad (4.11)
 \end{aligned}$$

Theorem 4.3. suppose $r < \frac{\alpha_2}{\alpha_1}$, θ be nonnegative real number, and let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping such that

$$\begin{aligned}
 & \left\| f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(x_j) - \sum_{j=1}^k f(y_j) - \sum_{j=1}^k f(z_j) \right\| \\
 & \leq \left\| \lambda_1 \left(f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) + \sum_{j=1}^k f(x_j - y_j) - \sum_{j=1}^k f(z_j) - 2 \sum_{j=1}^k f(x_j) \right) \right\| \\
 & + \left\| \lambda_2 \left(f\left(\sum_{j=1}^k x_j + \sum_{j=1}^k y_j + \sum_{j=1}^k z_j\right) - \sum_{j=1}^k f(x_j + y_j) - \sum_{j=1}^k f(z_j) \right) \right\| \\
 & + \theta \left(\sum_{j=1}^k \|x_j\|^r + \sum_{j=1}^k \|y_j\|^r + \sum_{j=1}^k \|z_j\|^r \right) \quad (4.12)
 \end{aligned}$$

for all $x_j, y_j, z_j \in X$ for all $j = 1 \rightarrow n$. Then there exists a unique mapping $\psi: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$\left\| f(x) - \psi(x) \right\| \leq \frac{2k}{(1 - |\lambda_1|^{\alpha_2} - |\lambda_2|^{\alpha_2})((2k)^{\alpha_2} - (2k)^{\alpha_1 r})} \theta \|x\|^r. \quad (4.13)$$

for all $x \in X$

The rest of the proof is similar to the proof of Theorem 4.2.

5. CONCLUSION

The result in this paper is that I have built the Jensen's additive (λ_1, λ_2) -function inequality with $3k$ -variables over (α_1, α_2) -homogeneous F spaces and I show the existence of n solutions for them.

REFERENCES

- [1]. ULam, S.M. (1960) A Collection of Mathematical Problems. Vol. 8, Interscience Publishers, New York.
- [2]. Hyers, D.H. (1941) On the Stability of the Functional Equation. Proceedings of the National Academy of the United States of America, 27, 222-224. <https://doi.org/10.1073/pnas.27.4.222>.
- [3]. Aoki, T. (1950) On the Stability of the Linear Transformation in Banach Space. Journal of the Mathematical Society of Japan, 2, 64-66. <https://doi.org/10.2969/jmsj/00210064>.
- [4]. Rassias, T.M. (1978) On the Stability of the Linear Mapping in Banach Space. Proceedings of the American Mathematical Society, 27, 297-300. <https://doi.org/10.1090/S0002-9939-1978-0507327-1>.
- [5]. Găvruta, P. (1994) A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings. Journal of Mathematical Analysis and Applications, 184, 431-436. <https://doi.org/10.1006/jmaa.1994>

.1211.

- [6]. Gila'nyi, A. (2002) On a Problem by K. Nikodem. *Mathematical Inequalities Applications*, 5, 707-710.
- [7]. Prager, W. and Schwaiger, J. (2013) A System of Two Inhomogeneous Linear Functional Equations. *Acta Mathematica Hungarica*, 140, 377-406. <https://doi.org/10.1007/s10474-013-0315-y>.
- [8]. Fechner, W. (2006) Stability of a Functional Inequalities Associated with the Jordan-Von Neumann Functional Equation. *Aequationes Mathematicae*, 71, 149-161. <https://doi.org/10.1007/s00010-005-2775-9>.
- [9]. Park, C. (2014) Additive β -Functional Inequalities. *Journal of Nonlinear Sciences and Applications*, 7, 296-310. <https://doi.org/10.22436/jnsa.007.05.02>
- [10]. Park, C. (2015) Additive η -Functional Inequalities and Equations. *Journal of Mathematical Inequalities*, 9, 17-26.
- [11]. Park, C. (2015) Additive β -Functional Inequalities in Non-Archimedean Normed Spaces. *Journal of Mathematical Inequalities*, 9, 397-407.
- [12]. Skof, F. (1983) Propriet locali e approssimazione di operatori. *Rendiconti del Seminario Matematico e Fisico di Milano*, 53, 113-129. <https://doi.org/10.1007/BF02924890>
- [13]. Fechner, W. (2010) On Some Functional Inequalities Related to the Logarithmic Mean. *Acta Mathematica Hungarica*, 128, 36-45. <https://doi.org/10.1007/s10474-010-9153-3>
- [14]. Cadariu, L. and Radu, V. (2003) Fixed Points and the Stability of Jensens Functional Equation. *Journal of Inequalities in Pure and Applied Mathematics*, 4, Article No. 4.
- [15]. Diaz, J. and Margolis, B. (1968) A Fixed-Point Theorem of the Alternative for Contractions on a Generalized Complete Metric Space. *Bulletin of the American Mathematical Society*, 74, 305-309. <https://doi.org/10.1090/S0002-9904-1968-11933-0>
- [16]. [16] Lee, J.R., Park, C. and Shin, D.Y. (2014) Additive and Quadratic Functional in Equalities in Non-Archimedean Normed Spaces. *International Journal of Mathematical Analysis*, 8, 1233-1247. <https://doi.org/10.12988/ijma.2014.44113>
- [17]. Yun, S. and Shin, D.Y. (2017) Stability of an Additive (p_1, p_2) -Functional Inequality in Banach Spaces. *The Pure and Applied Mathematics*, 24, 21-31. <https://doi.org/10.7468/jksmbe.2017.24.1.21>
- [18]. Mihet, D. and Radu, V. (2008) On the Stability of the Additive Cauchy Functional Equation in Random Normed Spaces. *Journal of Mathematical Analysis and Applications*, 343, 567-572. <https://doi.org/10.1016/j.jmaa.2008.01.100>
- [19]. Bahyrycz, A. and Piszczek, M. (2014) Hyers Stability of the Jensen Function Equation. *Acta Mathematica Hungarica*, 142, 353-365. <https://doi.org/10.1007/s10474-013-0347-3>
- [20]. Balcerowski, M. (2013) On the Functional Equations Related to a Problem of Z Boros and Z. Dr.
- [21]. *Acta Mathematica Hungarica*, 138, 329-340. <https://doi.org/10.1007/s10474-012-0278-4>
- [22]. Qarawani, M. (2012) Hyers-Ulam Stability of a Generalized Second-Order Nonlinear Differential Equation. *Applied Mathematics*, 3, 1857-1861. <https://doi.org/10.4236/am.2012.312252> <https://www.scirp.org/journal/am/>
- [23]. Park, C., Cho, Y. and Han, M. (2007) Functional Inequalities Associated with Jordan-Von Newman- Type Additive Functional Equations. *Journal of Inequalities and Applications*, 2007, Article No. 41820. <https://doi.org/10.1155/2007/41820>
- [24]. R, J. (2003) On Inequalities Associated with the Jordan-Von Neumann Functional Equation. *Aequationes Mathematicae*, 66, 191-200. <https://doi.org/10.1007/s00010-003-2684-8>
- [25]. Van An, L.Y. (2022) Generalized Hyers-Ulam-Rassisa Stability of an Additive $(1; 2)$ -Functional Inequalities with nVariables in Complex Banach. *Open Access Library Journal*, 9, e9183. <https://doi.org/10.4236/oalib.1109183>
- [26]. Van An, L.Y. (2019) Hyers-Ulam Stability of Functional Inequalities with Three Variable in Banach Spaces and Non-Archimedean Banach Spaces. *International Journal of Mathematical Analysis*, 13, 519-537. <https://doi.org/10.12988/ijma.2019.9954>
- [27]. Van An, LY. (2020) Hyers-Ulam Stability of Functional Inequalities with Three Variable in Non- Archimedean Banach Spaces and Complex Banach. *International Journal of Mathematical Analysis*, 14, 219-239. <https://doi.org/10.12988/ijma.2020.91169>
- [28]. Ly Van An Generalized Stability of Functional Inequalities with 3k-Variables Associated for Jordan- von Neumann-Type Additive Functional Equation *Open Access Library Journal*. *Open Access Library Journal* 2023, Volume 10, e9681 ISSN Online: 2333-9721 <https://doi.org/10.4236/oalib.1109681> ISSN Print: 2333-9705 Vol.10 No.1, January 2023