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Abstract:

In this paper, we introduce a new family of distributions called Length-Biased weighted
Exponentiated Lomax Distribution (LBWELD). Some properties of this family will be
discussed. The estimation of unknown parameters for LBWELD will be handled using
Maximum Likelihood method. Finally, an application to real data sets is illustrated.
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1. Introduction

The first appear of the concept "weighted distributions™ can be traced to Fisher (1934). Rao
(1965), identified various situations that can be modeled by weighted distributions.

Let X be a non-negative random variable with probability density function (pdf) g (x ) The
pdf of the weighted random variable X is given by

x>0

W (x)g(x)
"= W]

where w (x ) be a non-negative weight function.

When w (x ) =x , the distribution is called length-biased, whose pdf is

f )220 g (1)
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The formula (1) is used by many authors. Shaban and Boudrissa (2007) discussed the Weibull
length biased distribution with properties and estimation. The length biased weighted generalized
Rayleigh distribution is introduced by Das and Roy (2011). Seenoi et al (2014) discussed the
length biased exponentiated inverted Weibull distribution. The length biased weighted Lomax
distribution, statistical properties and application is introduced by Afaq et al (2016).

A random variable X is said to have an exponentiated Lomax distribution with three parameters
0, Aand « ifit's pdf is in the form (Abdul-Moniem and Abdel-Hameed (2012))

0 (x)=a0i[1-(1+2x) | (@ x) " x>0, (a0and 1>0). (2

The E (X ) corresponding (2) is
E (X )=%{B (1—%,04)—1}:%% 3)

Where D, =B(1—Jg,aj—8(1—17_1,aj, j=123

2. The Length-Biased weighted Exponentiated Lomax Distribu-tion
Using (1), (2) and (3), we can define the pdf of length-biased weighted exponentiated
Lomax distribution (LBWELD) as follows

a-1

a0 |1-(14 ax ) [ (e ax )

f(x) - ; x>0, (a,0and 1>0)
e

027 | 1-(1+ 2x )’ Tﬁl (14 Ax )
_ 5 ; x>0, (¢,0and 1>0). (4)
1

We can get the pdf for length-biased weighted exponentiated Pareto (LBWEP), length-biased
weighted Pareto (LBWP) and length-biased weighted Lomax (LBWL) distributions by taking
A=1, A=a=1and a =1 respectively.

Table 1: Sub-models of the LBEL distribution

No. Distribution a 0 A Author
1 LBWEP a 0 1 New
2 LBWP 1 0 1 New
3 LBWL 1 0 A Afag et al (2016)
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Figure 1 pdf of LBWELD under different values of parameters.

The cumulative distribution function F (x ), survival (reliability) function S (x ), the hazard rate

function (HRF) h(x ) and the reversed hazard rate function (RHRF) h”(x ) for LBWELD are

in the following forms:

6%2]. y [1—(1+ ay)”’ T_l (1+ Ay )_(M) dy
F(x)=—2"2
D
1

Using substitution

z =(1+A4y )_9
dz

5
—oa(1+2y ) ©)

we get

F(x)= 4 a , ©6)

where S(a,b;x )= Iua‘l (1-u)""du is an upper incomplete beta function.

X

D,-B[1- Y a1+ ax)” |+ H[1-@rax )"
5 (x)= ( ° Dlj ol J, ™
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a-1
OA’x | 1-(1+Ax )_0 (1+ Ax )_(M)
Nl
Dl—B(l—e,a,(1+ﬂ,x) J+a[1—(1+zx) ]
and
a-1
027 |1-(1+ax )" | (14 ax)""
[ | o

h™(x)=
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Figure 3 HRF of LBWELD under different values of parameters.
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Figure 4 RHRF of LBWELD under different values of parameters.

3. Statistical Properties

In this section some statistical properties of Length-Biased weighted exponentiated
Lomax distribution will be discuss.
3.1. Harmonic mean

The harmonic mean (H) of a random variable X with pdf f (x) is given by the following

1 1
~ _E| = 10
-E(x) (10)
Theorem

The harmonic mean of Length-Biased weighted of any distribution is equal to the mean
of the base distribution.
Proof:

Suppose f (x) is the pdf of Length-Biased weighted of any distribution, then

f (x)= 20 )

E(X)

formula

, x>0

where g (x ) is the pdf of base distribution with mean E (X ).
Using the formula (10), we get

el

0

1 % 1
LAY

This is implies that
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H=E(X) "
Corollary:
The harmonic mean for LBWELD is

a
H==D,

A

3.2. Moments

The r'" traditional moments for LBWELD is

2 @ e
w =E(X")= Hé“ X7 (2 ax )1 (1 ax) | "dx
10
Using substitution (5), we get
-r 1 1 r+l
1, _4 I(z = J (1-z)""dz
l 0
—r r+l 1 r+1-i
[r +1j ,[Z y 44
D1 i=0 0
r+l 1 —1
irz('”r] r+; |’aj
=0 cor=12,.. (11)

The first two moments can be obtained by taking r =1 and 2 in (11) as follows:

et o

= L 12
= D, D, (12)

and

: ”’zgm(‘”i f”(l‘séi’“) D,-2D,+D

— = 2 L 13
H D, ﬂle (13)

The variance (%), standard deviation (o ) and coefficient of variation (CV) for LBWELD are
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, D,-2D,+D, (D,-D,)’ D,D,~(D,)’

o’ = 3 2 1 _ 1=73 2 (14)
A’D, (D, )’ 23(D,)
D.D. —(D, )
o= 1-3 ( 2) (15)
AD,
and
D.D.—(D,Y
cv=Y_1"2 (0:) . (16)
Dz - D1
Table 2: Mean, variance and coefficient of variation of LBWELD for selected values of the
parameters.
Parameters . coefficient of
Mean Variance .
a 0 A variation
1 4 05 2 8 1.414
2 5 1 0.786 0.638 1.016
3 6 15 0.437 0.136 0.843
4 7 2 0.282 0.044 0.742
5 8 2.5 0.2 0.018 0.674

3.3. Moment generating function

The moment generating function, M (t ) is given by
M (t)=E (e‘x )zje“f (x )dx

0
t'OO
T!
t!

'MS gMS

—
I
o

This is implies that

n iji(j_ﬂj(_l)i ﬁ(l_j+;—i '“)

M (t):Z_ i=0 5
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3.4. Mode
The mode of LBWELD is the solve the following equation with respect to x

1-0ax +(1+Ax ) (afix —1)=0 (17)
3.5 Information entropies

The Shannon and Reny entropy for LBWELD have been obtained in this section.

3.5.1 Shannon entropy

The Shannon entropy for any distribution can be defined as E [—Inf (x )] :
For LBWELD the Shannon entropy is

E[-Inf (x)]=In(D,)-In(8)-2In(A)-E [In(X )]
~(a-DE [ In[1-(L+ax )]+ (0+1)E [In(L+2X )]

=In(D,)-In(8)-2In(2)—1,—(a-1)1,+(0+1)1, (18)
Where
l,=E[In(X)]= %jjxln( )[1—(1+,1x)’ﬂ“ (1+Ax ) " dx
QLZ 0

Integrating by parts we get

IF@CE[O{ 1] (-1 {[ 1+Ax ) +1dx+jln )(1+2x)” +l)dx}
0

D, &l i Jo(i+
(

O & 1) 1 Y .
:Ei_o[ i je(u 1 {}L[@ i +1)+1] 0(i +1)- Lin(A)+C +(e( +1)_1)]}’

(19)
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1, =E | In(1-(2+x ) )|
:%wa In(1-(2+2x ) )| 1= (14 A )“QT (2+4x ) dx

10

:%:iwo(ai_lj(_l)i Ix In(l—(1+}tx) )(1+ix) A gy

Using substitution (5), we get

i(ai—lj (1) 1 1 (20)

_i : 1[ (i +2) +c]|_;+1[‘{'(i%+2j+0}

and

I, =E[In(1+2X )]
_ AT

10

_%2 © (0{—1

xln(1+ﬂ,x)[ —(1+ Ax )_HT (1+x) ) d4x

5 i ] jxln (1+Ax)(1+Ax) o002 g
1 i=0

z =(1+Ax )_1
dz
dx

Using substitution ,
=A(1+x)

:a—l N @)
- io(i J( 1){ 1) 1[\1’(0(i +1))+c]—ﬁ[\11(9(i +1)+1)+C]}

D, O(i +1)— o(i +1
Where LIJ(x):dd—In(F(x )) and C is Eular constant.
X

Using the results (19), (20) and (21) in (18) and simplifying, we get the shannon entropy as:

Volume-4 | Issue-1 | January,2018 9



GREEN
PUBLICATION

International Journal For Research In Mathematics And Statistics ISSN: 208-2662

> (a-1
(-
E[-Inf (x)]In(Dl)—In(H)—ZIn(/I)—iZ':( ! j { . L

Dl

9{(«9+1)‘P(0(i +1))+(a—1)‘P[i —;+2j

- 3.5.2
o(i +1)-1 "
(a-1)¥ (i +2)+(0+1) ¥ (0(i +1)+1) A°[C +In(2)+¥(0(i +1)-1) |+ (a+6)C
i +1 (i+1)[0(i +1)-1]
Renyi entropy
Renyi entropy is defined as
1
I =——Ilog |f 7 (x)dx; 0 and y #1.
R(;/) 71 OgE[ (X) X, y>0 and y #
Now using the density function of LBWELD, we get
0" A% ¢ —p (e —r(6+1)
f7(x)dx = X7 1—(14 Ax 1+ Ax dx
[ b = o e )" [ e an)
Using substitution (5), we get
Qa1 1 1 4 _(‘9”-)(1_7)
_[f 7 (x)dx 7 /Vy j(z 9—1] (1—2)7(“_1)2 o dz
R (Dl) 0
gyt 7,} 1 S(a) _(0+)(1—p)+y-i
= ~(-1) |(1-z z 0 dz
o e fee)
:ey%y1i(q(—l)iﬁﬂl—(0+1)(1_y)+7/_i 7(0‘_1)““1}
(Dl)y =i 0 ’ .
Then, we get the Renyi entropy as:
o7 |(-ay
I, (7)=——1Iog =\ 5(1—(9+1)(1_7)+7_i (05—1)+1}
RV (D,) 0 7 |

Volume-4 | Issue-1 | January,2018 10



GREEN
PUBLICATION

International Journal For Research In Mathematics And Statistics ISSN: 208-2662

4. Maximum Likelihood Estimators (MLE)

In this section, we consider maximum likelihood estimators (MLE) of LBWELD. Let
X1, X, X, be a random sample of size n from LBWELD, then the log-likelihood function

L (1,6, ) can be written as

L(i,@,a)ocn{2In(ﬁ)+ln(0)+ln(a)+In(r(oﬁl—%D}
+gln(x (a- 1ZIn[ (1+2x,) }(0+1)Z:In(l+/1xi)

-n In{r[l—%)r(a +1)—F(a+1—%ﬂ (22)
Then
Z—Z:n a+1—%j +Zln —(1+2x; ) ]

a+1) w(cx +1—;j
_+_

23
I'(a+1) (23

nF(a+1 a+l lj
a+1 -

1—1)F a+1 F(a +1—1j
0 o

o _n 1Y] 0 (1+2%,) T In(1+ Ax,) &
a0 ‘92{0+ (a+1—5)_+(a—1)§ |:1_(1+/1Xi)79:| —gln(ﬂﬂxi)

r(l—ljr(ml_1j_r(a+l)w(l_;j W(Ml_g (24)

0 0 F(a+1—lj F(l—lj
_n L 0
2
0 F(l—ljl“(owrl (a+1—1j
0 0
oL _2n n X, (1+4x, )Y n

(25)

EY ) ‘9( _1)2[

1- (14 2x, )9} le T+ X))
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The MLE of A, & and « can be obtain by solving the equations (23), (24), and (25) using

o —=0, @—O and i:0.
oA 00 oo

4.1 Asymptotic confidence bounds
We derive it for these parameters when «, & > 0 and q > 0 as the MLEs of the unknown

parameters «, @ and A can't be obtained in closed forms, by using variance covariance matrix
see (Lawless(2003)), where

1-1

%L oL oL
07 0400  0lda
%L oL %L
oL 008 o
&L 8% &L
C0ad)  dadl  dd’

Thus

var(/i) cov(i é) cov(i,o})
| = cov(é,i) var( ) cov(é,o?)

_cov(o},i) cov(a,é?) var (&) |

So, we can get the (1 0 )100% confidence intervals of the parameters «, € and A as

a+Z var 0+Z ‘/var and/1+Z var

5. Appllcatlons

In this Section we fit LBWELD to two real data sets and compare the fitness with the
exponentiated Lomax (EL) and length-biased weighted Lomax (LBWL) distributions, whose
densities are given by

fio (X, 0,2) = afA[1- W+ 2%)° |7 @+ 2%)7“Y; x >0, (a,0and 2>0),

f o (6 0,2)= 20D
Specifically, we consider two data sets. The first set of data represents the survival times (in
days) of 72 guinea pigs infected with virulent tubercle bacilli, observed and reported by
Bjerkedal (1960). The second set represents the strengths of 1.5 cm glass fibres, measured at the
National Physical Laboratory, England. The data set is obtained from Smith and Naylor (1987).
In order to compare distributions, we consider the K-S (Kolmogorov-Smirnov) statistic, -2logL,
AIC (Akaike Information Criterion), AICC (Akaike Information Criterion Corrected), BIC
(Bayesian Information Criterion). The best distribution corresponds to lower -2logL, AIC, BIC,
AICC statistics value.

Where,

X (1+ )‘(‘9+1); x >0, (6,4>0).
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AIC=2m -2InL, AlcczA|C+m,

n-m-1

BIC=mIn(n)—2InL and K -S :maX(F(Xi)—E,I——F(xi))
n n

I<i<n

n
where F, (x) = EZI X is empirical distribution function, F(x) is comulative distribution
ns= '

function, m is the number of parameters in the statistical model, n the sample size and .

Table 3. Maximum-likelihood estimates, AIC, BIC and AICC values, and
K-S statistics for the 72 guinea pigs infected with virulent tubercle bacilli.
MLEs Measures

Model

A

p) 0 K-S |-2logL | AIC BIC AlICC

SH

LBWELD | 0.766 | 2.7 | 0.957 | 0.82 | 188.796 | 194.796 | 201.626 | 200.854

EL 0.249 | 2.172 | 0.797 | 0.321 | 199.983 | 205.983 | 212.813 | 212.042

LBWL 0.324 | 1.796 | -- | 0.333|260.247 | 264.247 | 268.8 | 268.291

The variance covariance matrix is

4.906x10° -0.171 2.828x10°
| =| -0.171 6.398 —0.094
2.828x10° -0.094 8.415x107°

The approximate 95% two sided confidence interval of the parameters 4,6 and « are [0.629,
0.903], [-2.258, 7.658] and [0.777, 1.137] respectively.

Table 4. Maximum-likelihood estimates, AIC, BIC and AICC values, and K-S statistics for the
strengths of 1.5 cm glass fibres.
MLEs Measures

Model

A A~

A o K-S |-2logL | AIC BIC AICC

ISP

LBWELD | 0.377 | 4.745 | 1.113 | 0.431 | 139.809 | 145.809 | 152.191 | 151.878

EL 0.21 | 2.199 | 0.677 | 0.413 | 172.106 | 178.106 | 184.487 | 184.175

LBWL 0.668 | 2.373 | -- |0.419|187.671 | 191.671 | 195.925 | 195.772

The variance covariance matrix is
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3.864x10° -0.122 1.938x10°®
| =| -0.122 4.37 —-0.058
1.938x10° -0.058 8.592x10°°

The approximate 95% two sided confidence interval of the parameters 4,6 and « are [0.255,
0.499], [0.648, 8.842] and [0.931, 1.295] respectively.

Table 3 and Table 4 show parameter MLEs, the values of K_S, -2logL, AIC, BIC, AICC
statistics for the three data set consecutively. From the above results, it is evident that the
LBWELD distribution is the best distribution for fitting these data sets compared to other
distributions considered here. And is a strong competitor to other distributions commonly used in
literature for fitting lifetime data.
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