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Abstract: 

In this paper, we introduce a new family of distributions called Length-Biased weighted 

Exponentiated Lomax Distribution (LBWELD). Some properties of this family will be 

discussed. The estimation of unknown parameters for LBWELD will be handled using 

Maximum Likelihood method. Finally, an application to real data sets is illustrated. 
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1. Introduction 

The first appear of the concept "weighted distributions" can be traced to Fisher (1934). Rao 

(1965), identified various situations that can be modeled by weighted distributions. 

Let X be a non-negative random variable with probability density function (pdf)  g x . The 

pdf of the weighted random variable X is given by 

 
   

 
,  0

w x g x
f x x

E w X
 

  

 

where  w x be a non-negative weight function. 

When  w x x , the distribution is called length-biased, whose pdf is 

 
 

 
,  0

xg x
f x x

E X
          (1) 
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The formula (1) is used by many authors. Shaban and Boudrissa (2007) discussed the Weibull 

length biased distribution with properties and estimation. The length biased weighted generalized 

Rayleigh distribution is introduced by Das and Roy (2011). Seenoi et al (2014) discussed the 

length biased exponentiated inverted Weibull distribution. The length biased weighted Lomax 

distribution, statistical properties and application is introduced by Afaq et al (2016). 

A random variable X is said to have an exponentiated Lomax distribution with three parameters 

,  and   if it's pdf is in the form (Abdul-Moniem and Abdel-Hameed  (2012)) 

     
 

 
1

1
1 1 1 ;   0,  ,  and 0g x x x x


 

     


        
 

. (2) 

The  E X  corresponding (2) is 

  1

1 1
1 , .E X B D

 


   

  
     

  
     (3) 

Where 
1

1 , 1 , ,      1,2,3.j

j j
D B B j 

 

   
       

   
 

2. The Length-Biased weighted Exponentiated Lomax Distribu-tion 

Using (1), (2) and (3), we can define the pdf of length-biased weighted exponentiated 

Lomax distribution (LBWELD) as follows 

 
   

 

 

1
1

1

1 1 1
;   0,  ,  and 0

x x x
f x x

D


 

  
  






     

     

 
   

 

 

1
12

1

1 1 1
;   0,  ,  and 0

x x x
x

D


 

  
  


     

    .  (4) 

We can get the pdf for length-biased weighted exponentiated Pareto (LBWEP), length-biased 

weighted Pareto (LBWP) and length-biased weighted Lomax (LBWL) distributions by taking 

1  , 1    and 1   respectively. 

Table 1: Sub-models of the LBEL distribution 

No. Distribution    Author 

1 LBWEP    1 New 

2 LBWP 1  1 New 

3 LBWL 1    Afaq et al (2016) 
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Figure 1 pdf of LBWELD under different values of parameters. 

The cumulative distribution function
 

 F x , survival (reliability) function
 

 S x , the hazard rate 

function (HRF)  h x  and the reversed hazard rate function (RHRF)  *h x  for LBWELD are 

in the following forms: 

 
   

 1
12

0

1

1 1 1

x

y y y dy

F x
D


 

  


     
 




 

Using substitution 

 

 
 1

1

1

z y

dz
y

dy







 



 

  
 
 

  
 

.         (5) 

we get 

 
   

1

1 1
1 ,   ; 1 1 1B x x

F x
D


 

  
 

             ,    (6) 

where    
1

11, ; 1
ba

x

a b x u u du
   is an upper incomplete beta function. 

 
   1

1

1 1
1 , ; 1 1 1D B x x

S x
D


 

  
 

              ,    (7) 
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 
   

 

   

1
12

1

1 1 1

1 1
1 , ; 1 1 1

x x x
h x

D B x x


 


 

  

  
 


  

 

   
 

            

,    (8) 

and 

 
   

 

   

1
12

*
1 1 1

1 1
1 ,   ; 1 1 1

x x x
h x

B x x


 


 

  

  
 


  

 

   
 

           

.    (9) 

 

Figure 2 CDF of LBWELD under different values of parameters. 

 

Figure 3 HRF of LBWELD under different values of parameters. 
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Figure 4 RHRF of LBWELD under different values of parameters. 

 

3. Statistical Properties 

In this section some statistical properties of Length-Biased weighted exponentiated 

Lomax distribution will be discuss. 

3.1. Harmonic mean 

The harmonic mean (H) of a random variable X with pdf  f x  is given by the following 

formula  

1 1
E

H X

 
  

 
                 (10) 

Theorem 

The harmonic mean of Length-Biased weighted of any distribution is equal to the mean 

of the base distribution. 

Proof: 

Suppose  f x  is the pdf of Length-Biased weighted of any distribution, then 

 
 

 
,  0

xg x
f x x

E X
   

where  g x  is the pdf of base distribution with mean  E X . 

Using the formula (10), we get  

 

 
 

 

0

0

1 1

1 1
     

f x
E dx

H X x

g x dx
E X E X





 
  

 

 





 

This is implies that 

1 2 3 4 5 6
x
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0.4
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0.7

h x

0.65 , 1.1 , 0.44
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0.9 , 1.65 , 0.21
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 H E X          ■ 

 

Corollary: 

The harmonic mean for LBWELD is 

1.H D



  

3.2. Moments  

The rth traditional moments for LBWELD is 

   
 

 
2 1

11

1 0

1 1 1r r

r E X x x x dx
D

 
  




        
    

Using substitution (5), we get 

 

   

11 1
1

1 0

1 11
1

01 0

1 1

1
     1 1

  

r
r

r

r ir r
i

i

z z dz
D

r
z z dz

iD















 

    



 
    

 

 
   

 



 

    

 
1

0

1

1 1
1 1 ,

  
     ;     1,2,...

r
ir

i

r r i

i
r

D

  







    
   

   


            (11) 

The first two moments can be obtained by taking r =1 and 2 in (11) as follows: 

 
2

1

0 2 1
1

1 1

2 2
1 1 ,

,

i

i

i

i D D

D D

  









   
   

    


             (12) 

and 

 
3

2

0 3 2 1
2 2

1 1

3 3
1 1 ,

2
,

i

i

i

i D D D

D D

  









   
   

     


   (13) 

The variance (
2 ), standard deviation ( ) and coefficient of variation (CV) for LBWELD are 
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 

 

 

 

2 2

2 1 1 3 22 3 2 1

2 22 2 2
1 1 1

2 D D D D DD D D

D D D


  

  
       (14) 

 
2

1 3 2

1

D D D

D





         (15) 

and 

 
2

1 3 2

2 1

CV .
D D D

D D





       (16) 

Table 2: Mean, variance and coefficient of variation of LBWELD for selected values of the 

parameters. 

Parameters  
Mean  Variance  

coefficient of 

variation 𝛼 θ λ 

1 4 0.5 2 8 1.414 

2 5 1 0.786 0.638 1.016 

3 6 1.5 0.437 0.136 0.843 

4 7 2 0.282 0.044 0.742 

5 8 2.5 0.2 0.018 0.674 

 

3.3. Moment generating function  

The moment generating function,  M t , is given by 

     

 

0

0 0

0

         
!

         
!

tX tx

j
j

j

j

j

j

M t E e e f x dx

t
x f x dx

j

t

j













 








 



 

This is implies that 

 
 

1

0

0 1

1 1
1 1 ,

  

!

j
ij

j
i

j

j j i

it
M t

j D

  










    
   

  


  
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3.4. Mode  

The mode of LBWELD is the solve the following equation with respect to x 

   1 1 1 0x x x


  


                    (17) 

3.5 Information entropies 

The Shannon and Reny entropy for LBWELD have been obtained in this section. 

3.5.1 Shannon entropy 

The Shannon entropy for any distribution can be defined as  lnE f x   . 

For LBWELD the Shannon entropy is  

         

       

1ln ln ln 2ln ln

                        1 ln 1 1 1 ln 1

E f x D E X

E X E X


 

   


          

            

         1 1 2 3                        = ln ln 2ln 1 1D I I I                      (18) 

Where  

       
 

    
 

2 1
1

1

1 0

2
1 1

01 0

ln ln 1 1 1

1
                        1 ln 1

  

i i

i

I E X x x x x dx
D

x x x dx
iD

 




 







  


  



         

 
   

 



 

 

Integrating by parts we get 

 

 
 

 
  

 

 

     
    

1 1

1

01 0 0

01

1 1
1 ln 1

  1

1 1 1
     = ln 1 1 ,

  1 1 11 1

i

i i

i

i

i

I x dx x x dx
iD i

C i
iD i ii

 
 



 
 

  

 
   







   
     

   

     
                  

  



(19) 
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  

      
 

     
 

2

2 1
1

1 0

2
1 1

01 0

ln 1 1

   ln 1 1 1 1 1

1
   = 1 ln 1 1 1

  

i i

i

I E X

x x x x dx
D

x x x dx
iD



  

 




  


 






   


   



   
 

      
 

 
    

 



 

 

Using substitution (5), we get 

   

 
 

1 1

2

01 0

0

1

11
1 1 ln 1

  

1
1

  1 1 1
    2 2 ,

11
1

i i

i

i

i

I z z z dz
iD

i
i C i C

D i
i










 







   
     

   

    
                      
 

 

        (20) 

and 

 

     
 

    
 

3

2 1
1

1 0

2
1 1

01 0

ln 1

   ln 1 1 1 1

1
   = 1 ln 1 1

  

i i

i

I E X

x x x x dx
D

x x x dx
iD

 






  


 




  


  



   

     
 

 
   

 



 

 

Using substitution 

 

 

1

2

1

1

z x

dz
x

dx



 





  
 
 

  
 

.     

     

 

 
  

 
  

1
1 1

3

01 0

0

1

1 1
1 1 ln

  

1
1

  1 1
   1 1 1

1 1 1

i i

i

i

i

I z z dz
iD z

i
i C i C

D i i






 
 


 







   
     

  

 
                         

 


(21)  

Where     ln
d

x x
dx

    and C  is Eular constant. 

Using the results (19), (20) and (21) in (18) and simplifying, we get the shannon entropy as: 
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       
 

   

      

 

               

   

0

1

1

2

1
1

  1
ln ln ln 2ln

1 1 1

1
1 1 1 2

                      
1 1

ln 1 11 2 1 1 1

1 1 1 1

i

i i
E f x D

D i i

i i

i

C i Ci i

i i i



 


   




      







 
                

  
         

   
 

                
       



3.5.2 

Renyi entropy 

Renyi entropy is defined as  

   
1

log ;   0  and 1.
1

R

R

I f x dx  


  
   

Now using the density function of LBWELD, we get  

 
 

 
 

 
 

2 1
1

01

1 1 1
R

f x dx x x x dx
D

      



 
 




      
    

Using substitution (5), we get 

 
 

 
 

  

 
   

 
  

 
 

  
 

1 11 11 1
1

01

1 111 1
1

0 01

1 1

01

1 1

                  1 1

1 1
                  1 1 , 1 1 .

R

i
i

i

i

i

f x dx z z z dz
D

z z dz
iD

i

iD

   
   



   
 




 



 

 

    
  



  
 

      



  



 
   

 

 
   

 

     
      

   

 

 



 

Then, we get the Renyi entropy as: 

 
 

 

  
 

1 1

0

1

1
1 11

log 1 , 1 1 .
1

i

i

R

ii
I

D

 




 

  
   

 


 



  
  

          
   
 
  


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4. Maximum Likelihood Estimators (MLE) 

In this section, we consider maximum likelihood estimators (MLE) of LBWELD. Let 

1 2, ,..., nx x x be a random sample of size n from LBWELD, then the log-likelihood function 

 , ,L     can be written as  

       

         
1 1 1

1
, , 2ln ln ln ln 1

                ln 1 ln 1 1 1 ln 1
n n n

i i i

i i i

L n

x x x


      


   


  

   
         

   

        
   

 

  
1 1

ln 1 1 1n  
 

    
           

    
             (22) 

Then 

 

 
 

 

 

1

1 1
1 ln 1 1

1 1
1 1 1

1
1 1

1 1
1

1 1
1 1 1

n

i

i

L
n x

n


  

  

   
 

 
 




 
 





                  

    
                    

           
   

         
   



            (23) 

 
   

 
 

 

 

2
1 1

2

1 ln 11
1 1 ln 1

1 1

1 1
1 1 1

1 1
1 1

1 1
1 1

1 1
1 1 1

n n
i i

i

i i
i

x xL n
x

x

n





 
    

   

   
 


 


 


 

 




 

    
               

 

    
                        

                    
   

         
   

 

  (24) 

 
 

 

 
 

 

1

1 1

12
1 1

11 1

n n
i i i

i i ii

x x xL n

xx






  

  

 


 


    

   
 

 
  

          (25) 

11                                      

International Journal For Research In Mathematics And Statistics ISSN: 208-2662

Volume-4 | Issue-1 | January,2018 11



The MLE of ,     and  can be obtain by solving the equations (23), (24), and (25) using

0
L







, 0

L







 and 0

L







. 

 

4.1 Asymptotic confidence bounds 

We derive it for these parameters when ,     > 0 and q > 0 as the MLEs of the unknown 

parameters ,     and   can't be obtained in closed forms, by using variance covariance matrix 

see (Lawless(2003)), where 
1

2 2 2

2

2 2 2

2

2 2 2

2

L L L

L L L
I

L L L

    

    

    



   
   
     

    
        
 

   
        

 

Thus 

     

     

     

ˆ ˆ ˆ ˆ ˆvar cov , cov ,

ˆ ˆ ˆ ˆ ˆcov , var cov ,

ˆ ˆˆ ˆ ˆcov , cov , var

I

    

    

    

 
 
 


 
 
  

 

So, we can get the (1   )100% confidence intervals of the parameters ,     and   as 

   
2 2

ˆ ˆˆ ˆvar ,  varZ Z       and  
2

ˆ ˆvarZ   . 

5.  Applications   

        In this Section we fit LBWELD to two real data sets and compare the fitness with the 

exponentiated Lomax (EL) and length-biased weighted Lomax (LBWL) distributions, whose 

densities are given by 

 
1

( 1)( ; , , ) 1 (1 x) (1 x) ;   0,  , 0 ,LDf x x and


         


           

 ( 1)

2

( 1)
( ; , ) (1 ) ;  0,  , 0 .LBWL

x
f x x x 

   
 

 
     

 Specifically, we consider two data sets. The first set of data represents the survival times (in 

days) of 72 guinea pigs infected with virulent tubercle bacilli, observed and reported by 

Bjerkedal (1960). The second set represents the strengths of 1.5 cm glass fibres, measured at the 

National Physical Laboratory, England. The data set is obtained from Smith and Naylor (1987). 

In order to compare distributions, we consider the K-S (Kolmogorov-Smirnov) statistic, -2logL, 

AIC (Akaike Information Criterion), AICC (Akaike Information Criterion Corrected), BIC 

(Bayesian Information Criterion). The best distribution corresponds to lower -2logL, AIC, BIC, 

AICC statistics value. 

Where,                           
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2 ( 1)
= 2 2ln , = ,

1

m m
AIC m L AICC AIC

n m


 

 
 

1

1
= ln( ) 2ln   and = ( ( ) , ( ))max i i

i n

i i
BIC m n L K S F x F x

n n 


    

is comulative distribution  )(xF, is empirical distribution function x
i

x

n

i

n I
n

xF 
1=

1
=)( where

. the sample size and n, is the number of parameters in the statistical model m, function 

 

Table 3. Maximum-likelihood estimates, AIC, BIC and AICC values, and    

K-S statistics for the 72 guinea pigs infected with virulent tubercle bacilli. 

Model 

MLEs Measures 

̂ ̂ ̂ K-S -2logL AIC BIC AICC 

LBWELD 0.766 2.7 0.957 0. 82 188.796 194.796 201.626 200.854 

EL 0.249 2.172 0.797 0.321 199.983 205.983 212.813 212.042 

LBWL 0.324 1.796 -- 0.333 260.247 264.247 268.8 268.291 

The variance covariance matrix is 

3 3

3 3

4.906 10 0.171 2.828 10

0.171 6.398 0.094

2.828 10 0.094 8.415 10

I

 

 

   
 

   
    

 

The approximate 95% two sided confidence interval of the parameters ,   and  are [0.629, 

0.903],  [-2.258, 7.658] and [0.777, 1.137] respectively. 

Table 4. Maximum-likelihood estimates, AIC, BIC and AICC values, and K-S statistics for the 

strengths of 1.5 cm glass fibres. 

Model 

MLEs Measures 

̂ ̂ ̂ K-S -2logL AIC BIC AICC 

LBWELD 0.377 4.745 1.113 0.431 139.809 145.809 152.191 151.878 

EL 0.21 2.199 0.677 0.413 172.106 178.106 184.487 184.175 

LBWL 0.668 2.373 -- 0.419 187.671 191.671 195.925 195.772 

The variance covariance matrix is 
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3 3

3 3

3.864 10 0.122 1.938 10

0.122 4.37 0.058

1.938 10 0.058 8.592 10

I

 

 

   
 

   
    

 

The approximate 95% two sided confidence interval of the parameters ,   and  are  [0.255, 

0.499], [0.648, 8.842] and [0.931, 1.295] respectively. 

Table 3 and Table 4 show parameter MLEs, the values of K_S, -2logL, AIC, BIC, AICC 

statistics for the three data set consecutively. From the above results, it is evident that the 

LBWELD distribution is the best distribution for fitting these data sets compared to other 

distributions considered here. And is a strong competitor to other distributions commonly used in 

literature for fitting lifetime data. 
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