

$K_{p,q}$ graph - Edge Product Number

J.P. Thavamani

Associate Professor, Department of Mathematics, M.E.S. College,
Nedumkandam(po), Idukki(dt), Kerala(st)-685553, India

Emil: jpthavamani@gmail.com

Abstract

A graph G is said to be an edge product graph if there exists an edge function $f: E \rightarrow P$ such that the function f and its corresponding edge product function F on V satisfies that $F(v) \in P$ for every $v \in V$ and if $e_1, e_2, \dots, e_p \in E$ such that $f(e_1) \cdot f(e_2) \cdot \dots \cdot f(e_p) \in P$ then the edges e_1, e_2, \dots, e_p are incident on a vertex. In this paper the edge product number of complete bipartite graph is found.

Keywords: edge product function, edge product graph, edge product number of a graph

1. Introduction

We begin with simple, finite, connected and undirected graph $G = (V(G), E(G))$. For all other terminology and notations, follow Harary[1,2]. Here brief summary of definitions which are used for the present investigation are given. A dynamic survey on graph labeling is regularly updated by Gallian[3] and is published by electronic journal of combinatorics.

2. Previous Results

Definition: 2.1

Let G be a graph and P be a set of positive integers with $|E| = |P|$. Then any bijection $f: E \rightarrow P$ is called an edge function of the graph G . Define $F(v) = \prod \{f(e) / e \text{ is incident on } v\}$ on V . Then F is called the edge product function of the edge function f . G is said to be an edge product graph if there exists an edge function $f: E \rightarrow P$ such that f and its corresponding edge product function F on V satisfy the conditions that $F(v) \in P$ for every $v \in V$ and if $e_1, e_2, \dots, e_p \in E$ such that $f(e_1) \cdot f(e_2) \cdot \dots \cdot f(e_p) \in P$, then e_1, e_2, \dots, e_p are incident on a vertex.

Definition: 2.2

Let $EPN(G)$, the edge product number of G , denote the minimum number K_2 components that must be added to G so that the resulting graph is an edge product graph. For any connected graph G other than K_2 , $EPN(G) \geq 1$. Let $EPN(G) = r$. An edge function $f: E \rightarrow P$ and its corresponding edge product function F which make $G \cup rK_2$ an edge product graph are respectively called an optimal edge function and an optimal edge product function of G .

Definition: 2.3

Let $K_{(p, q)}$ be a complete bipartite graph with $p+q$ vertices and pq edges. If $G = K_{(p, q)} \cup rK_2$ is a

graph with $EPN(K_{p,q})=r$ where $r \geq 1$ and $2 \leq p \leq q$. Let the vertex set and the edge set of $K_{p,q}$ be $V_1=\{u_1, u_2, \dots, u_p, v_1, v_2, \dots, v_q\}$ and $E_1=\{u_i v_j : 1 \leq i \leq p \text{ and } 1 \leq j \leq q\}$ respectively.

The mapping $f: E \rightarrow P$ is the optimal edge function and F is its corresponding optimal edge product function of f . The optimal edge function $f: E \rightarrow P$ can be restricted to the edge set E_1 and is represented by a matrix $(a_{i,j})$ of order $(p \times q)$, where $a_{i,j} = f(u_i v_j)$ for $1 \leq i \leq p$ and $1 \leq j \leq q$. Then the matrix $(a_{i,j})$ is known as edge function matrix of the complete bipartite graph $K_{p,q}$. The row product and the column product of the optimal edge product function F is defined by

$F(u_i) = i^{\text{th}}$ row product for $1 \leq i \leq p$ and

$F(v_j) = j^{\text{th}}$ column product for $1 \leq j \leq q$

Since u_i and v_j are the vertices for $1 \leq i \leq p$ and for $1 \leq j \leq q$. The i^{th} row elements are the labeling of the edges incident on u_i and the j^{th} column elements are the labeling of the edges incident on v_j .

Definition: 2.4

Let $U_{(p,q)}$ be a matrix of order $p \times q$. Then the two power unit product matrix $U_{(p,q)}$ is constructed by

$$u_{(i,j)} = 2^{(i-1)+(j-1)(p-1)} \text{ for } 1 \leq i \leq (p-1) \text{ and for } 1 \leq j \leq (q-1)$$

$$u_{(p,j)} = \left(\frac{1}{2^{(j-1)(p-1)} \prod \{2^{(k-1)} : 1 \leq k \leq (p-1)\}} \right) \text{ for } 1 \leq j \leq (q-1)$$

$$u_{(i,q)} = \left(\frac{1}{2^{(i-1)} \prod \{2^{(k-1)(p-1)} : 1 \leq k \leq (q-1)\}} \right) \text{ for } 1 \leq i \leq (p-1)$$

$$u_{(p,q)} = \prod \{2^{k-1} : 1 \leq k \leq (p-1)(q-1)\}$$

3. Main Result

Lemma: 3.1

If $U_{(p,q)}$ is a two power unit product matrix of order $(p \times q)$. Then

- (i) The product of row elements and column elements of the matrix $U_{(p,q)}$ are equal to one.
- (ii) The product of a collection of distinct elements of $U_{(p,q)}$ are one then they form a row or a column.

Theorem: 3.2

If $K_{p,q}$ is a complete bipartite graph then $EPN(K_{p,q}) \geq 2$ for $2 \leq p < q$.

Proof:

Assume that for a complete bipartite graph $K_{p,q}$, $EPN(K_{p,q})=1$ for some $2 \leq p < q$. Consider a graph $G=K_{p,q} \cup K_2$ is an edge product graph for $2 \leq p < q$. Let $V=\{u_1, u_2, \dots, u_p, v_1, v_2, \dots, v_q, w_1, w_2\}$ be the vertex set and $E=\{u_i v_j : 1 \leq i \leq p \text{ and } 1 \leq j \leq q\} \cup \{w_1 w_2\}$ be the edge set of G . The mapping $f: E \rightarrow P$ is an optimal edge function and the function F is its corresponding optimal edge product function. Then F is an outer edge product function if $K_{p,q}$ has no pendent vertex and is triangle free. We have $F(u_i) = F(v_j) = f(w_1 w_2 = x \text{ (say)})$, for $1 \leq i \leq p$ and $1 \leq j \leq q$.

Hence $\prod \{\prod \{f(u_i v_j) : 1 \leq i \leq p : 1 \leq j \leq q\} = \prod \{\prod \{f(u_i v_j) : 1 \leq j \leq q\} : 1 \leq i \leq p\}$.

Therefore, $\prod \{F(u_i) : 1 \leq i \leq p\} = \prod \{F(v_j) : 1 \leq j \leq q\}$.

That is, $x^q = x^p \Rightarrow q = p$ which is a contradiction to our hypothesis that $q > p$. Hence we have $\text{EPN}(K_{p,q}) \geq 2$ for $2 \leq p < q$.

Example:

If $p = 2$, $q = 4$ and then take $x = 2^5$ we have the edge function matrix A of order (2×4) is:

$$\begin{bmatrix} 2^{12} & 2^{13} & 2^{14} & 2^5 \\ 2^{10} & 2^9 & 2^8 & 2^{17} \end{bmatrix}$$

The graph $K_{(2,4)} \cup 2K_2$ is an edge product graph and $\text{EPN}(K_{2,4}) = 2$ is illustrated in the following figure.

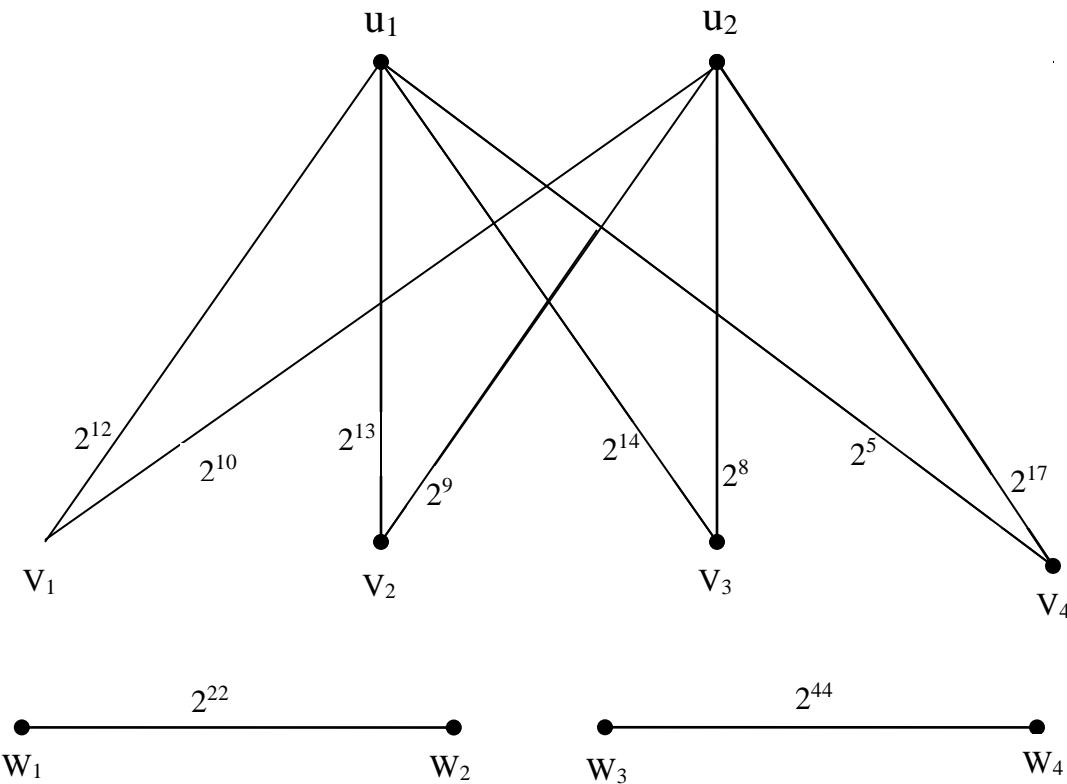


Figure 1

Theorem: 3.3

If $K_{(p,q)}$ is a complete bipartite graph for $2 \leq p < q$. Let $K_{(p,q)} \cup 2K_2$ be an edge product graph and $\text{EPN}(K_{(p,q)}) = 2$. Let $f: E \rightarrow P$ be an optimal edge function and the function F be its corresponding optimal edge product function of the graph G and the range of $F = \{x, y\}$ then $[\text{g.c.d of } \{x, y\}] \notin \{x, y\}$

Proof:

Consider a graph $K_{(p,q)} \cup 2K_2$ is an edge product graph for $2 \leq p < q$ with vertex set $V = \{u_1, u_2, \dots, u_p, v_1, v_2, \dots, v_q, w_1, w_2, w_3, w_4\}$ and edge set $E = \{u_i v_j : 1 \leq i \leq p \text{ and } 1 \leq j \leq q\} \cup \{w_1 w_2, w_3 w_4\}$.

$$\text{Let } F(u_i) = F(v_j) = \begin{cases} x & \text{for } 1 \leq i \leq p_1 \text{ and } 1 \leq j \leq q_1 \\ y & \text{for } (p_1 + 1) \leq i \leq p \text{ and } (q_1 + 1) \leq j \leq q \end{cases}$$

If $p_2 = (p / p_1)$ and $q_2 = (q / q_1)$ then $\prod \{F(u_i) : 1 \leq i \leq p\} = \prod \{F(v_j) : 1 \leq j \leq q\}$

Therefore $x^{p_1}y^{p_2} = x^{q_1}y^{q_2}$. If $p_1 = q_1$ then $q_2 = p_2$ and $p = p_1 p_2 = q_1 q_2 = q$ which is a contradiction to our hypothesis that $q > p$.

If $p_1 > q_1$ then clearly $q_2 > p_2$. Consider [g.c.d of {x, y}] = y. Then y is a divisor of x.

Let $x = y^p$, then $y^{p(p_1-q_1)} = y^{(q_2-p_2)} \Rightarrow p = [(q_2/p_2) / (p_1/q_1)] \leq (q_2/p_2) \leq q_2$.

In one partition there are at least p vertices whose image under the function F which are equal to y, taking the entire edges incident on them we get that their total labeling is equal to x. But they are all not incident on a vertex.

This is a contradiction that the graph G is an edge product graph. Hence y is not a divisor of x.

Similarly x is not a divisor of y.

Therefore [g.c.d of {x, y}] is neither x nor y. Thus we obtain that [g.c.d of {x, y}] $\notin \{x, y\}$.

References

- [1] F. Harary, Graph Theory, Addison - Wesley, Reading, 1969
- [2] F. Harary, *Sum graphs over all the integers*, Discrete Math., 124 (1994) 99-105
- [3] A. Gallian, *A dynamic survey of graph labeling*, The Electronic Journal of Combinatorics, 16 (2000) 39-48