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Abstract

The growing population has led to increase in waiting time and overcrowding in the
hospital service, a Poisson regression model has been developed to analyze the time series of
count data. In finding a Poisson regression model, parameters are estimated and goodness-
of-fit is utilized to carefully extract the best model to fit the count data. The marginal effect is
the basis function which can be used in the Poisson regression model. This study attempted to
analyze actual operations of a hospital and proposed modifications in the system to reduce
waiting times for the patients, which should lead to an improved view of the quality of service
provided. To develop a Poisson regression analysis model for the above situation, we need to
define a model for the expected number of patients for hospital services cases. Here, two
underlying variables are of interest, “waiting time” and “hospital services”. Since “waiting
time” have been categorized seven groups. The variable “hospital services” which contains
four categorizes (No welfare (NW), Reimbursement to employer (RE), Social Security Service
(SS) and 30 baht for welfare health service (Gold cards (30W)). As a result, significant levels
of causal variables are not expected to be identical for each model. We find that 30 baht for
welfare health service (Gold cards (30W)) category has a higher rate of increase in the
average waiting time. The marginal effect is a basis function that can be used in the Poisson
regression. It allows into arrive at better predictions of hospital service and rehabilitation
decision making.
Keywords: Poisson regression model, Risk Rate model, Log-linear model, Queueing model,

Hospital service

1 Introduction

In the categorical data analysis literatures (Heien, 2004), the survival models and/or
the Poisson regression models are treated differently than standard logit models. In general,
these models are termed as Rate Models or Risk Rate Models. In its simplest form, a rate is
defined as the number of individuals or observations possessing a particular characteristic
divided by the total amount of exposure to the risk of having such a characteristic. The
Poisson regression Models can easily be connected to the standard Poisson Models (Daniel
and Xie, 2000). Then the Poisson Models are directly related to the Exponential Models by
making conversion of rates per unit interval with the waiting time until the first occurrence.
Here we use a Poisson regression Model to determine the likelihood of the demand for
hospital services in a queueing system is to identify factors associated with increased health
care utilization; particularly those factors related to hospital services. This is a difficult task
for several reasons.

From queuing theory standpoint, a welfare hospital department can be viewed as a
system of queues and different types of servers. A quantitative analysis of the wait time

Volume-5 | Issue-1 | Jan, 2019 1


mailto:Kriengstat@yahoo.com

N

GREEN

PUBLICATION

International Journal For Research In Mathematics And Statistics ISSN: 2208-2662

problem in welfare hospital department is dependent upon the identification of a
methodology which recognizes the structure of the problem as that of a queuing system. Two
modes of analysis are generally suggested by the structure of this type of problem: queuing
models and discrete event simulations.

The Admitting department consists of four major areas: Front desk, Registration desk,
Waiting area, and Financial Consulting area (within Business Department). When patient
enters the Admitting department, they are asked by front-desk clerk to provide name and
reason for visit. Admitting clerk determines patient’s type (No welfare (NW),
Reimbursement to employer (RE), Social Security Service (SS) and the 30 baht for welfare
health service (Gold cards (30W)) and create new account using Hospital Informational
System. Admitting serves most outpatient and inpatient types, with an exception for: No
welfare (NW), Reimbursement to employer (RE), Social Security Service (SS) and the 30
baht for welfare health service (Gold cards (30W)) It is essential to assess the relationship
between hospital services and average waiting time in a queuing system. The clerk also
clarifies if patient was pre-registered for this service or not. If the answer is yes, the clerk gets
patient’s documentation ready for the admission representative. Then the patient receives an
assigned number and is asked to wait in admitting waiting area for admitting representative to
call the number. Admitting representative determines if the patient ever receives the service
at the hospital and if so, pull up patient’s data from Meditech and verifies patient’s personal
information. If the patient is visiting the hospital for the first time, admitting clerk creates
patient’s profile in the Hospital Information Database system.

Law and Kelton (2001) proposed an algorithm of a successful computer simulation
study. This algorithm includes the following key steps: 1. Problem formulation, 2. Data
collection and the conceptual model design, 3. The validation of the model, 4. The
constructions of the computer representation of the model, 5. The verification of the model, 6.
The design of experiments needed to address the problem, 7. Production runs using the
computer model, 8. The statistical analysis of the data obtained from the production runs, and
9. The interpretation of the results.

First, even in the case of constant demand levels over the day, statistical fluctuations
in individual patient waiting times and the variability in the time needed by a provider to
service patients can create long delays even when overall average steady state capacity is
greater than average demand. Second, the magnitude of delays is a log-linear function of the
demand for hospital services level, and are thus impossible to predict without the use of a
queueing model. (Green and Nguyen 2001).

2 Methodology of Risk Rate Models
2.1 Risk Rate Models analysis
Let Yi be the number of patients of an event of interest for the i subject and denote

the independent variables by xi, i=1,...,n. We assume that Yi follows a Poisson distribution,
Yi ~ Poisson ( 4,), with density
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Let t1 , t2,...,tn be the waiting times of the nth individual, and assume the
distribution function to be F(t) = Pr(T < t) with probability density function f(t). The risk rate
is denoted by, and can be viewed the instantaneous probability of an event in the interval [t,
t+1], given the event has not occurred before time t. formally, the risk rate (Charles and
McFadden 1981), is defined by the following limit:

.1
= _ >
u(t) ltan()At Prit<T <t+At|T >t] (2

The density of an exponential distribution with parameter x is given by

f(t) = we ™ t>0. 3)
The distribution function equal
F(t)=1-pe™, t20. (4)

For this distribution, we have

L. (%)

2
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The probability of an event not occurring up to time t is given by the function

P(t)=Pr[T >t] =1-F(t)=e™ (6)
Assuming the waiting times are exponentially distributed, the equation (6) may be written as:
P(t ) — e( —ut;) (7)

The risk rate is defined by the ratio. s(t )= () __f(©) _pe” ®)

P(t) 1-F(t) e*
The general risk rate model may be written as: (X /3 ) = e/ 2ur-=/%) 9)

where x"= [1, X1, X2, ..., xn], and So, A, ...,/ are unknown constants as the rate is determined
by several regressors. This exponential risk rate model can be estimated using a Poisson
regression Models for counts. In a time interval of length t, the probability of y events is

Y al—ut)
given by: Pr(y|y,t)=(“t)y—?# (10)

Because the mean number of events in the time interval tis A = ut, for the i individual, the
expected number of events in the time interval t is

A =ut or A =te ) (11)
Taking the log of the Poisson means results in the log-linear regression model:

A T

Namely, log( 4 )—log(t)=x 4 , (13)

log(2) =X 4, (12)
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2.2. Goodness-of-Fit

The log-likelihood function of the process cannot be the only index of fit because the
likelihood-ratio-statistics is dependent on the size of the sample. Different values of the log-
likelihood function result when competing models, namely models that differ in the number
of parameters, are fitted to the same data. The number of parameters, in general, should be
more than one, and significantly less than the number of observations. To assess the model
goodness-of-fit, we need to know how one model fits relative to another. An indicator of a
model goodness-of-fit that measures the extent to which the current model deviates from a
more generalized model is given by the likelihood-ratio-statistics:

Lo

G*=-2 Iog{ i J =-2(logL, —logL,), (14)

f

where log L, is the log-likelihood of the current model, and log L, is the log-likelihood of the

more generalized model. The likelihood ratio statistics has a Chi-Square distribution with
K, — K, degrees of freedom, where K, and K, denote the number of parameters in the more
generalized model and the current model, respectively (McCullagh and Nelder 1989).

2.3.  Marginal Effects

For Poisson regression, the marginal effects can be thought of as the relative risk
associated with a certain variable. The overall mean effect in (15) is

AXB)=e*P (15)
Then, the marginal effect due to the k™ factor can be considered as
6, =%.e*'" (16)

where X, is the mean of the k™ factor values in the sample and X' is the vector of the means

of the factor values in the sample. An estimate of 6, can be computed as
6, =e” (7)

3 Estimation results and interpretation

We assume that victims arrive at the first hospital at moment t, and the inter-arrival
time is exponential and that the arrival rate is A(t) ; there are s(t) parallel servers in the
hospital, the service time is exponential and that the service rate is u(z); and the hospital can
accommodate the largest number of victims is N.

Setting the inter-arrival time as, and there is only one event (arrival or completing
treatment) at most occur in A(t). If there are K victims at moment t in the system, and:

1) The arrival probability A(t) A(t) is when only one victim arrives at the hospital
during A(t).;

2) The arrival probability o(4t); is when more than one victims arrive at the hospital
during A(t);
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3) Assuming that the arrival time between victims is independent during At the
service probability completed a victim is min(s(t),K)u(t)4t in At;

4) The service probability completed more than one victim is 0(4t); in At.

If the arrival victims follow the first three assumptions, they will be subject to the
non-homogeneous Poisson process. The value of At can be small enough to reduce the error
of calculating the transient probability.

We use pi(t) to denote the probability of i victims in the system at the moment t based
on the initial system. Therefore, Po(0) = 1 if i >0, Pi(0) = 0. Then according to the following
equation, we can calculate the probability of i victims in the system.

This result is graphically depicted in Fig. 1, is the M/M/1 and the M/M/s queue, which
shows the probability of n outpatients arriving in the system (Pn) slowly decreases as the
number n outpatients arriving in the system (P») increases and similarly Poisson distribution.
Suppose we observe a non-homogeneous Poisson process X (t) with rate A(t) by Poisson
regression analysis. Another categorical class of log-linear models that are commonly
considered is that in which log (4 (t)) is assumed to be a polynomial with unknown
coefficients.

The M/M/1queue and The M/M/s queue of Probability of n outpatients arriving in system

M/M/ of Prebabilityefn cutpatient arriving in system
M/MIZ 0f Probabllity of m outpatient arriving In system

Probability of i outpatient amiving in syetem
o
L
Probab by of 1 onpate stary g system
-

Numberofn outpatientarriving in system Numberofs outpatient armking In system

Relmbursement wiR employer
------------------ Healih Insurance Card (30 Sant)
s 5y Service

——  ZooilSecurly

——————  Sochl Securly

. Mo owedars e No weHare

MM /3 of Probability of o ostpatisal amiviag in 3 yatem M /M4 of Probability of n outpatient arriving in system

Pratability ofr outp atient armving in syeem

Probability of i outpatient armiving in system
-
L

Mumberofn outpatient arriving in system

R eim Dursement with empio yer . . R
.................. Heakh Insurance Card (30 Bahi) Number of n outpatient arriving in system
—————_  Sooiml Securmy Service
————. HoweHare

Rembursement wEh employer
------------------ Healknh Insurance Card (30 Bant
—————— SocialSacuriy Serice
————— . Mo wedare

Fig 1. We find that the probability of n outpatients arriving in the system slowly decreases as
the number n outpatients arriving in the system increases and similarly Poisson distribution.
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The data set was obtained quantitative data from a survey by the Nakhonpathom
Hospital in Thailand for the year 2017 in Fig.1 above was used to estimate the probability of
n outpatients arriving in the system and number of n outpatients arriving in the system. The
M/M/1 queue of probability of n outpatients arriving in the system (Pn) have Reimbursement
to employer (RE), the 30 baht for welfare health service (Gold cards (30W)), Social Security
Service (SS) and No welfare (NW) respectively. The M/M/1 queue of probability of n
outpatients arriving in the system (Pn) slowly decreases as the number n of outpatients
arriving in the system increases, similar to the Poisson distribution The M/M/s queue of
probability of n outpatients arriving in the system (Pn) have Reimbursement to employer
(RE), the 30 baht for welfare health service (Gold cards (30W)), Social Security Service (SS)
and No welfare (NW) respectively. The M/M/s queue of probability of n outpatients arriving
in the system (Pn) slowly decreases as the number n of outpatients arriving in the system
increases, similar to the Poisson distribution

The following data was obtained quantitative data from a survey by the
Nakhonpathom Hospital in Thailand for the year 2017. The Admitting Department is one of
the most highly congested hospital services, and faces a great deal of pressure, compared with
other components of the health care system. Admitting clerk determines patient’s type (No
welfare (NW), Reimbursement to employer (RE), Social Security Service (SS) and the 30
baht for welfare health service (Gold cards (30W)) and create new account using Hospital
Informational System. Admitting serves most outpatient and inpatient types, with an
exception for: No welfare (NW), Reimbursement to employer (RE), Social Security Service
(SS) and the 30 baht for welfare health service (Gold cards (30W)). It is essential to assess
the relationship between hospital services and average waiting time in a queuing system.
Using SAS to perform the iterations necessary for the maximum likelihood method, the
following results have been obtained.

Table 1 Contingency Table of Outpatients

Hospital Services
Average waiting time | NW (h1) | RE (h2) | SSS (h3) | 30W (hs) | Total
1-20 (t) 1 3 4
21-40 (t2) 6 7 33 46
41-60 (ta) 10 12 9 31 62
61-80 (ta) 8 1 9
81-100 (ts) 33 7 5 45
101-120 (to) 30 30
> 120 (t7) 4 4
Total 47 33 22 98 200

To develop a Poison regression Models model for the above situation, we need to
define a model for the expected number of patients for welfare cases, E (Yjj) in terms of the
variables of interest. Here, two underlying variables are of interest, “waiting time” and
“welfare”. Since “waiting time” has been categorized into seven groups, we will use six
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dummy variables to index them. The variable “welfare” which contains four categorizes,
requires only three dummy variables. Thus, one possible model for the expected number of
patient for welfare cases in the (i,j)™ group can be written as:
E(Yi) = wij=mijlij , where  logli=a+pE,i=1,2, ...nj=12, ..,m
Using this model, we can write the risks Ajjin terms of the parameters ¢ and/ to obtain
loglic=a+a and loglii=a +ai +p,
since logAi1 - loglioc=(a +ai +f-a-a)

logAi1 - logio = 3, 50 6, =)
4 Model Results

The data set in Table 1 above was used to estimate the average waiting time and
hospital services for medical and health services on the Poisson regression analysis with

hospital services variables characterized by the marginal effect (6, =e'?)). Two separate

models were specified and estimated for each state since the various causal factors vary over
time, as a result, significant level of causal variables are not expected to be identical for each
model. The model is to compare the average waiting time (t) and hospital services (h). We
also computed a chi-square test relation log-linear model and Poisson regression Models:
Saturated log-linear model: logA = p+iti+ gghj+ ajtih;

(18)
Poisson regression Models: log 4, = §,+ 8%, + B%; + ¥y i=1,2, ....n;j=1,2,...m

(19)
where are dummy variables and the interaction variable is, and the variable x1 corresponds to
the No welfare (NW) case, X2 corresponds to the Reimbursement to employer (RE) case, X3
corresponds to the Social Security Service (SS) case, x4 corresponds to the 30 baht for
welfare health service (Gold cards (30W)) case, x5 corresponds to the group with average
waiting time 1-20 min, Xe corresponds to the group with average waiting time 21-40 min, X7
corresponds to the group with average waiting time 41-60 min, xg corresponds to the group
with average waiting time 61-80 min, X9 corresponds to the group of with average waiting
time 81-100 min, Xio corresponds to the group with average waiting time 101-120 min,
x11corresponds to the group with average waiting time > 120 min, and X12= X1 X5 , X13= X2 X5,
X14= X3 X5 ,...,X39=X4 X11.

A saturated log-linear model rate defined. We use the deviations between the
maximized log-likelihood from each model to perform a series of Chi-square tests in order to
ascertain which model gives the best fit.

So, the saturated log-linear model is og(1)= . + Z it + z ”|hj+ z z ﬂ”tlhJ
i=1 j=1 i=1j=1

(20)

The main effects model of factors t and w is log(4) = u+ § it + E wh.

(21)
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n
The main effects model of factor tis log(A)=u+ X it
i=1
(22)

The main effects model of factor wis log(1)=u + Zﬂihj
j=1
(23) Poisson regression Models:

28
So, the saturated log-linear model is log(})= B, + 3 Bx;

=1
(24)

11
The main effects model of factors t and w is log(1) = B, + X ﬂixi

=1
(25)

;
The main effects model of factor tis 10g(4) = B, + X ’Bixi
i=1
(26)

The main effects model of factor w is log(/) = 3, + _ glﬁixi
| =

(27)
The following results were obtained.

The saturated log-linear model yields
log(1) = -14.8949+16.2841h1-0.6423h; ]
1.1326h3+16.1394t:+18.406t>+18.853613+17.6167t4+18.10ts+ 18.2963ts-32h1  t1-16  hots-
0.0365h3t1-32h1t2-0.0718  hat2-0.2821hst2-15.9804h1t3-0.5691h,t3-0.4642hst3-32h1ts-16hsts-
16h1ts+32h1ts-16hote-16hsts, (28)
log-likelihood = 383.3958, df =26

The main effects model of factors w and t yields
log(1)=0.9728+0.04h1-0.962h,-1.559h3-
0.0957t1+2.588t>+2.9627t3+1.6526t4+2.5138t5+2.4172ts,  (29)
log-likelihood = 375.2952,Chi-square=10.857, df = 17

The main effects model of factor yields
log(4)=0.05539-0.1605t1+2.481t,+2.7188t3+1.2ts +12.4825 t5+2.8036 ts,
(30)
log-likelihood = 341.413,Chi-square=80.413,df=20

The main effects model of factor h yields
log(4)=3.2908-0.4153h1-1.1057h2-1.6614hs, (31)

log-likelihood = 307.565,Chi-square=125.923,df =23
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Goodness-of-Fit

Using these results, we tested the competing models using the likelihood-ratio
statistics as described in section 2.2 in order to determine in goodness of fit. To perform the
tests, we started by testing the saturated model in (30) against the main factors model in (31),
and then tested the main factors model against its nested counterparts. The results of Chi-
square tests, performed with « = 0.05, are as follows:
Table 2.Test goodness-of-fit model of hospital services

Test G2 Df

(29) vs (28) | -2[(375.2952)-(383.3958)]=16.2012
(30) vs (29) | -2[(341.4130)-(375.2952)]=67.7644
(31) vs (29) | -2[(307.5654)-(375.2952)]=135.4596

w w ©

The main factors model in (29) compared to saturated model (with all the
interactions) in (28) has adequate fit model. The model in (29) has adequate fit compared to
all models. The main factors of welfare model in (31) compared to all models in (29). The
model in (31) has adequate fit compared to welfare model. Thus, we decided to choose the
main factors model in (31) as the adequate model for this data set.

The main effects model; log(1)= 8, + B,X, + ByX, + BsXs + B, X,

log(4) = 3.2908-0.4153w1-1.1057 w»-1.6614ws3-0.00001w4 (32)
Table 3. Mean marginal effect of hospital services
Variable Marginal effect
No welfare (NW), (x1) | e %41%%=0.66014
Reimbursement to employer (RE) (x2) | & 1197=0.33098
Social Security Service (SS) (x3) | e 1961%=0.18987
The 30 baht for welfare health service (Gold cards (30W))  (x4) | e %% = 0.99999

Tables 2 and 3 shows that the parameter estimates of hospital services are significant
at the 5% level. The results indicate into arrive at better predictions of health services. As for
the hospital services class, the categories are No welfare (NW), Reimbursement to employer
(RE), Social Security Service (SS) and the 30 baht for welfare health service (Gold cards
(30W)). The marginal effects are computed as described in Section 2.3. The marginal effect

for the first factor, The No welfare (NW), group, is calculated as &, =exp(f,) = 0.66014.

This means, the target population of the No welfare (NW) group has a 0.66014 times. The
marginal effect for the second factor, The Reimbursement to employer (RE) group, is

calculated as 92 = exp(ﬁz): 0.33098. This means the target population of the Reimbursement to
employer (RE) group has a 0.33098 times. The marginal effect for the third factor, The Social
Security Service (SS) group, is calculated as 4, = exp(f,) = 0.18987. This means the target

population of Social Security Service (SS) group has a 0.18987 times. The marginal effect for
the fourth factor, The 30 baht for welfare health service (Gold cards (30W)) group, is
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calculated as 54 :exp(ﬁ4) = 0.99999. This means the target population of the30 baht for

welfare health service (30W) group has a 0.99999 times.

This results in a monotonic increase in the waiting time rate function. This result is
graphically depicted in Fig. 2, which shows a clear increase in the waiting time rate function
for categorical welfare variables.

Mean waiting time rate

160

140 -

120

100 -

Mean waiting time

o 20 40 60 80 100 120 140 160

Time (Mminute)

Health insurance card (30 baht)
No welfare
—————— Reimbursement to employer
—_—— — Social Security Service

Fig. 2. The waiting time rate function is linearly increasing for each of the categorical welfare
variables.

As a result, significant levels of causal variables are not expected to be identical for
each model. We find Fig.2 that 30 baht for welfare health service (Gold cards (30W))
category has a higher rate of increase in the average waiting time. The marginal effect is a
basis function that can be used in the Poisson regression. It allows into arrive at better
predictions of hospital service and rehabilitation decision making.

5 Conclusions

This paper has surveyed the use of queuing theory for the analysis of different types
of waiting time and welfare hospital. Models for estimating waiting time and welfare
hospital, models for system design, and models for evaluating appointment systems have
been presented. The survey has reviewed models for departments (or units), facilities, and
systems. We find that the 30 baht for welfare health service (Gold cards (30W)) category has
a higher rate of increase in the average waiting time. The marginal effect (6,) is a basis

function that can be used in the Poisson regression analysis for flexibility. In this paper, we
have described an easily implemental estimation procedure for the coefficients of hospital
services in the queuing system. The estimation approach is based on using a series of
prediction probabilities. Furthermore, the methodology for determining the prediction
probabilities from the waiting time model is developed. Finally, testing for statistical
significance was carried out and the risk rate function was found to be increasing.

Waiting time in the welfare hospital can be reduced through implementation of
quantitative methods, understanding of best practices, and commitment to change. For
instance, queuing models of welfare hospital department activity have a broad range of
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potential applications. One of the most promising areas is the study of welfare hospital
overcrowding. A critical capability afforded by patient flow simulation is the reconstruction
of the factors that are responsible for overcrowding. This allows a more detailed
understanding of the relationship between the observed conditions and related outcomes that
could lead to informed optimization decisions.

As long as increasing the productivity of healthcare organizations remains important,
analysts will seek to apply relevant models to improve the performance of healthcare
processes. This paper shows that many models are available today. However, analysts will
increasingly need to consider the ways in which distinct queuing systems within an
organization interact. Developing appropriate models of the links (or interfaces) between the
distinct queuing systems is an important direction for future research.
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